scholarly journals AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy

2012 ◽  
Vol 53 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Brian Bostick ◽  
Jin-Hong Shin ◽  
Yongping Yue ◽  
Nalinda B. Wasala ◽  
Yi Lai ◽  
...  
JCI Insight ◽  
2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Zachary M. Howard ◽  
Lisa E. Dorn ◽  
Jeovanna Lowe ◽  
Megan D. Gertzen ◽  
Pierce Ciccone ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


2017 ◽  
Vol 27 ◽  
pp. S188 ◽  
Author(s):  
J. Schneider ◽  
J. Gonzalez ◽  
K. Brown ◽  
D. Golebiowski ◽  
V. Ricotti ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2556
Author(s):  
Kantaro Yoshioka ◽  
Akira Ito ◽  
Masanobu Horie ◽  
Kazushi Ikeda ◽  
Sho Kataoka ◽  
...  

Duchenne muscular dystrophy (DMD) is a genetic disorder that results from deficiency of the dystrophin protein. In recent years, DMD pathological models have been created using induced pluripotent stem (iPS) cells derived from DMD patients. In addition, gene therapy using CRISPR-Cas9 technology to repair the dystrophin gene has been proposed as a new treatment method for DMD. However, it is not known whether the contractile function of myotubes derived from gene-repaired iPS cells can be restored. We therefore investigated the maturation of myotubes in electrical pulse stimulation culture and examined the effect of gene repair by observing the contractile behaviour of myotubes. The contraction activity of myotubes derived from dystrophin-gene repaired iPS cells was improved by electrical pulse stimulation culture. The iPS cell method used in this study for evaluating muscle contractile activity is a useful technique for analysing the mechanism of hereditary muscular disease pathogenesis and for evaluating the efficacy of new drugs and gene therapy.


2011 ◽  
Vol 110 (3) ◽  
pp. 601-609 ◽  
Author(s):  
Pooneh Bagher ◽  
Dongsheng Duan ◽  
Steven S. Segal

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by mutations in the dystrophin gene. Little is known about how blood flow control is affected in arteriolar networks supplying dystrophic muscle. We tested the hypothesis that mdx mice, a murine model for DMD, exhibit defects in arteriolar vasomotor control. The cremaster muscle was prepared for intravital microscopy in pentobarbital sodium-anesthetized mdx and C57BL/10 control mice ( n ≥ 5 per group). Spontaneous vasomotor tone increased similarly with arteriolar branch order in both mdx and C57BL/10 mice [pooled values: first order (1A), 6%; second order (2A), 56%; and third order (3A), 61%] with no difference in maximal diameters between groups measured during equilibration with topical 10 μM sodium nitroprusside (pooled values: 1A, 70 ± 3 μm; 2A, 31 ± 3 μm; and 3A, 19 ± 3 μm). Concentration-response curves to acetylcholine (ACh) and norepinephrine added to the superfusion solution did not differ between mdx and C57BL/10 mice, nor did constriction to elevated (21%) oxygen. In response to local stimulation from a micropipette, conducted vasodilation to ACh and conducted vasoconstriction to KCl were also not different between groups; however, constriction decayed with distance ( P < 0.05) whereas dilation did not. Remarkably, arteriolar constriction to perivascular nerve stimulation (PNS) at 2, 4, and 8 Hz was reduced by ∼25–30% in mdx mice compared with C57BL/10 mice ( P < 0.05). With intact arteriolar reactivity to agonists, attenuated constriction to perivascular nerve stimulation indicates impaired neurovascular transmission in arterioles controlling blood flow in mdx mice.


Sign in / Sign up

Export Citation Format

Share Document