Implications of a Bayesian radiocarbon calibration of colonization ages for mammalian megafauna in glaciated New York State after the Last Glacial Maximum

2016 ◽  
Vol 85 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Robert S. Feranec ◽  
Andrew L. Kozlowski

To understand what factors control species colonization and extirpation within specific paleoecosystems, we analyzed radiocarbon dates of megafaunal mammal species from New York State after the Last Glacial Maximum. We hypothesized that the timing of colonization and extirpation were both driven by access to preferred habitat types. Bayesian calibration of a database of 39 radiocarbon dates shows that caribou (Rangifer tarandus) were the first colonizers, then mammoth (Mammuthus sp.), and finally American mastodon (Mammut americanum). The timing of colonization cannot reject the hypothesis that colonizing megafauna tracked preferred habitats, as caribou and mammoth arrived when tundra was present, while mastodon arrived after boreal forest was prominent in the state. The timing of caribou colonization implies that ecosystems were developed in the state prior to 16,000 cal yr BP. The contemporaneous arrival of American mastodon with Sporormiella spore decline suggests the dung fungus spore is not an adequate indicator of American mastodon population size. The pattern in the timing of extirpation is opposite to that of colonization. The lack of environmental changes suspected to be ecologically detrimental to American mastodon and mammoth coupled with the arrival of humans shortly before extirpation suggests an anthropogenic cause in the loss of the analyzed species.

1998 ◽  
Vol 49 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Marie-Pierre Ledru ◽  
Jacques Bertaux ◽  
Abdelfettah Sifeddine ◽  
Kenitiro Suguio

Environmental conditions of the lowland tropical forests during the last glacial maximum (LGM) between ca 20,000 and 18,000 14C yr B.P., are reevaluated in terms of dating control and lithology analyzed in seven pollen records from South America. The reevaluation shows that probably in none of the published records are LGM sediments present or abundant. This conclusion is based on the occurrence of abrupt lithologic changes coupled with changes in sedimentation rate interpolated from radiocarbon dates. These findings suggest that the LGM was represented probably by a hiatus of several thousand years, indicative of drier climates than before or after.


Author(s):  
Rafael Cámara Artigas ◽  
Bartolomeu Israel de Souza ◽  
Raquel Porto de Lima

The state of Paraíba in northeast Brazil contains four of the seven biomes present in the country: Mata Atlântica, Cerrado, Caatinga and Matas Serranas. On the other hand, Amazônia, Pantanal and Pampa were not found in this area. This special situation allows us to analyse changes in the distribution of these four large Brazilian biomes according to bioclimatic conditions, using the methodology of bioclimatic regime types. Based on the analysis of variables from periods of hydric and thermal vegetation stagnation, obtained from hydric and bioclimatic balances, average monthly temperature and rainfall, that methodology enables us to establish a typology of 27 types of bioclimatic regimes and 243 bioclimatic regime subtypes with the 9 Thornthwaite ombrothermal levels. In Paraíba 4 types of bioclimatic regimes are currently identified (mesophyllo, tropophyllo, xerophyllo and eurythermophilous) and 9 subtypes according to ombrothermal levels. In order to analyse the changes, extreme change situations were chosen: a past scenario with the Last Glacial Maximum (40 ky); and an RCP 8.5 climate change scenario for the CMSS 4.0 model for the year 2070. This enabled 3 bioclimatic regime maps of each of the 3 aforementioned situations to be obtained, providing a map of potential distribution of the plant formations of Paraíba state according to the specific field knowledge and bioclimatic mapping obtained for the present. This paper concludes that a retrocession of the Mata Atlântica can be seen from the Last Glacial Maximum up to the present, losing its optimal bioclimatic conditions and therefore remaining in a highly fragile relict situation in the face of anthropic pressure (sugarcane cultivation and urban expansion); an advance toward 2070 of the Caatinga in its shrub form as a predominant formation is indicated by the projection of climate change in 2070 for the analysed situation, specifically resulting from anthropic pressure, in this case due to livestock activities which have affected this biome in Paraíba since the mid-19th century.


2021 ◽  
Author(s):  
Karen Søby Özdemir ◽  
Henrieka Detlef ◽  
Linda Lambertucci ◽  
Christof Pearce

<p>Little is known about climate and ocean conditions during the Last Glacial Maximum in Baffin Bay, Greenland. This is partly due to the dissolution of biogenic carbonates in the central Baffin Bay, preventing reliable <sup>14</sup>C-chronologies. We present the results from a transect of gravity cores retrieved during the 2019 BIOS cruise on the HDMS Lauge Koch in the northern Baffin Bay. Core LK19-ST8-14G has been analyzed for grain size variations, sea-ice biomarkers, XRF, and color spectrophotometry. A preliminary chronology based on radiocarbon dates from foraminifera show that the bottom of the core is approximately 35.000 cal. years BP while the top sediments are of Late Holocene age. The sediment archive thus covers the full extent of the LGM and the last deglaciation. High-resolution photography and CT scans allowed the identification of distinctly different lithofacies in the sediment archive. The lower sections of the core are characterized by laminated mud with no IRD and absence of microfossils indicating a sub ice-shelf environment during the glacial period. The laminated sequence is interrupted by several coarser, detrital-carbonate (DC) rich layers which are interpreted as episodes of glacial retreat or ice-shelf collapse. The youngest of these DC layers immediately precedes the Holocene, which is represented by approximately 40 cm of bioturbated sediments with some IRD. This interpretation is supported by the concentrations of HBIs and sterols throughout the core, which indicate near perennial ice cover in the glacial northern Baffin Bay and more open water conditions during the Holocene.</p>


2020 ◽  
Author(s):  
Sarahmae Buen ◽  
Fernando Siringan ◽  
Ronald Lloren

<p>Deep marine sediments may provide insights of past climate and oceanographic events. Knowledge of the past events can aid in scenario setting of future climate and their oceanographic consequences. A deep sea sediment core from the western side of Bohol Sea, a marginal sea located south of the Philippines, was used to reconstruct precipitation and identify the impacts of sea level rise on the circulation of Bohol Sea.  Five radiocarbon dates from bulk organic matter provide age control spanning back to the Last Glacial Maximum. Sedimentological (lithics and carbonate fractions; bulk density; sedimentation rate and mass accumulation rate) and geochemical (Ti, Al, Zr, Ti/Al and Y/Ni) data were used to reconstruct the sediment input for the area. Sediment input was decreasing from 20-15ka, followed by a relatively stable trend until ~9ka. After ~9ka sediment input increased up until the most recent years. Sedimentation trend follows the average winter (DJF) insolation curve at 10<sup>o</sup>N. This signifies that the sediment input reflects the general changes in precipitation in the area. Lithics and carbonate contents reflect a shift in sediment source that could be attributed to the change in circulation in the basin as the sea level rose to overtop the Surigao Strait located at the northeastern side of the basin. Greater westward transport of suspended material from large rivers to the east would contribute to the sedimentation in the western part of Bohol Sea.</p>


1994 ◽  
Vol 42 (2) ◽  
pp. 136-148 ◽  
Author(s):  
Daniel H. Mann ◽  
Dorothy M. Peteet

AbstractA glacier complex composed of confluent alpine glaciers, island ice caps, and piedmont lobes covered much of the Alaska Peninsula and Kodiak Island during the last glacial maximum (LGM). Because this glacier complex formed the southeastern border of Beringia, its dynamics may have been important in the timing and feasibility of the northwest coast route for human migration into lower-latitude North America. Radiocarbon dates from stratigraphic sections on Kodiak Island and in the Bristol Bay lowlands bracket the LGM in southwestern Alaska between 23,000 and 14,700 yr B.P. Reconstruction of ice thickness based on glacier trimlines, moraines, and calculations of basal-shear stress depict the Alaska Peninsula Glacier Complex flowing to the outer edge of the continental shelf in the Gulf of Alaska. Equilibrium-line altitudes (ELAs) were 300 to 700 m lower than today and approached sea level on the southwestern Alaska Peninsula. In northeastern areas where ELAs were higher, bedrock topography largely controlled ice flow except where ice saddles bridged straits and inlets.


Sign in / Sign up

Export Citation Format

Share Document