CALIBRATION OF VERTEBRATE FAUNAL REMAINS AS AN ADDITIONAL TOOL TO PROVIDE A TEMPORAL FRAMEWORK FOR THE TIMING OF DEGLACIATION IN NEW YORK STATE AFTER THE LAST GLACIAL MAXIMUM

2016 ◽  
Author(s):  
Robert S. Feranec ◽  
◽  
Andrew Kozlowski
2016 ◽  
Vol 85 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Robert S. Feranec ◽  
Andrew L. Kozlowski

To understand what factors control species colonization and extirpation within specific paleoecosystems, we analyzed radiocarbon dates of megafaunal mammal species from New York State after the Last Glacial Maximum. We hypothesized that the timing of colonization and extirpation were both driven by access to preferred habitat types. Bayesian calibration of a database of 39 radiocarbon dates shows that caribou (Rangifer tarandus) were the first colonizers, then mammoth (Mammuthus sp.), and finally American mastodon (Mammut americanum). The timing of colonization cannot reject the hypothesis that colonizing megafauna tracked preferred habitats, as caribou and mammoth arrived when tundra was present, while mastodon arrived after boreal forest was prominent in the state. The timing of caribou colonization implies that ecosystems were developed in the state prior to 16,000 cal yr BP. The contemporaneous arrival of American mastodon with Sporormiella spore decline suggests the dung fungus spore is not an adequate indicator of American mastodon population size. The pattern in the timing of extirpation is opposite to that of colonization. The lack of environmental changes suspected to be ecologically detrimental to American mastodon and mammoth coupled with the arrival of humans shortly before extirpation suggests an anthropogenic cause in the loss of the analyzed species.


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


2017 ◽  
Author(s):  
Brendon J. Quirk ◽  
◽  
Jeffrey R. Moore ◽  
Benjamin J. Laabs ◽  
Mitchell A. Plummer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document