Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(II)-substituted Keggin type heteropolytungstate

1999 ◽  
Vol 388 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
Wenliang Sun ◽  
Song Zhang ◽  
Huizhang Liu ◽  
Litong Jin ◽  
Jilie Kong
2019 ◽  
Vol 65 (1) ◽  
pp. 133-138 ◽  
Author(s):  
László Kiss ◽  
Sándor Kunsági-Máté

In the first part of the work electropolymerisation of phenol was studied at glassy carbon electrode. Rapid fouling of its surface indicated the formation of coherent poly(phenyleneoxide) layer which was demonstrated by the repeated cyclic voltammetric scans. Effect of anodic pretreatment potential in acetonitrile solvent was also investigated and the results showed that at potentials higher than 2 V glassy carbon electrode becomes deactivated. Preanodisation of glassy carbon electrode at 3 V in acetonitrile resulted in diminished anodic peak currents by phenols. It was due to the partial deactivation of electrode surface and its extent increased with the pretreatment time. The electrooxidation of para-substituted phenols (p-Cl-phenol, p-NO2-phenol, p-tertbutylphenol, p-methoxyphenol) in acetonitrile resulted in no fouling layer on platinum electrode and the peak currents were significantly higher than in the first scan of unsubstituted phenol in the same concentration. Glassy carbon deactivated continuously by repeating the scans due to the solvent and bonding of products on the surface.


2019 ◽  
Vol 11 (5) ◽  
pp. 604-609 ◽  
Author(s):  
Jianhua Fan ◽  
Junjie Pang ◽  
Yue Zhang ◽  
Lijuan Zhang ◽  
Wenwen Xu ◽  
...  

Hydroquinone (HQ) and catechol (CC) are two isomers, which often coexist and interfere with each other during their identification in samples.


Sign in / Sign up

Export Citation Format

Share Document