anodic peak
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 2)

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bernard Owusu Asimeng ◽  
Emmanuel Nyankson ◽  
Johnson Kwame Efavi ◽  
Amartey Nii Amarkai ◽  
Gloria Pokuaa Manu ◽  
...  

Magnetic Fe3O4 nanoparticles were synthesized from maize leaves and plantain peels extract mediators. Particles were characterized, and the inhibitory effects were studied on HeLa cells in vitro using cyclic voltammetry (CV). Voltammograms from the CV show that Fe3O4 NPs interaction with HeLa cells affected their electrochemical behavior. The nanoparticles formed with higher Fe3+/Fe2+ molar ratio (2.8 : 1) resulted in smaller crystallite sizes compared to those formed with lower Fe3+/Fe2+ molar ratio (1.4 : 1). The particles with the smallest crystallite size showed higher anodic peak currents, whereas the larger crystallite sizes resulted in lower anodic peak currents. The peak currents relate to cell inhibition and are confirmed by the half-maximum inhibitory concentration (IC50). The findings show that the particles have a different inhibitory mechanism on HeLa cells ion transfer and are promising to be further exploited for cancer treatment.


2020 ◽  
Vol 10 (5) ◽  
pp. 6460-6473 ◽  

An electrochemical oxidation of dopamine (DA) and tyrosine (Tyr) by metal oxide (MO) modified electrode where M=Cu and Ni in phosphate buffer solution (PBS), pH 7.0 has been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CuO and NiO nanoparticles were prepared by sol-gel process and co-precipitation method respectively and their structure, composition and surface morphology were examined by SEM, XRD, FTIR, UV and Raman techniques. A simple drop cast method is employed for the surface modification of graphite electrode to prepare MO modified electrode and it exhibited good electrocatalytic activity towards detection of DA and Tyr. The present investigation on CV studies of DA at CuO modified electrode showed a reversible oxidation process with an anodic peak potential at +0.249V vs. SCE. However, no specific anodic oxidation peak identified with NiO modified electrode. Subsequent CV studies with Tyr at MO modified electrode (M=Cu, Ni) shows an irreversible oxidation process and both modified electrodes exhibited an anodic peak at a potential of +0.80V against very low or no anodic peak currents obtained at bare graphite electrode. Moreover, the CuO modified electrode (CMG) successfully separated the anodic signals of dopamine (DA), Ascorbic acid (AA) and Tyrosine in their ternary mixture whereas on bare graphite a single, overlapped oxidative peak was observed. In CV studies, the peak potential difference between AA-DA, DA-Tyr and AA-Tyr is 166 mV, 323 mV and 489 mV respectively and the corresponding peak potential separations are 209 mV, 400 mV and 609 mV respectively in differential pulse voltammetry (DPV). Owing to good stability, selectivity and simple low cost fabrication method, CuO modified electrode is found to be well suited for simultaneous determination of DA, AA and Tyr in their ternary mixture. Additionally, NiO modified electrode also shows good sensitivity towards the detection of tyrosine, so it acts as a good electrochemical sensor to assay tyrosine in the biological sample.


2020 ◽  
Vol 65 (1) ◽  
pp. 139-147
Author(s):  
László Kiss ◽  
Ferenc Kovács ◽  
Sándor Kunsági-Máté

Electrooxidation of N,N’-diphenylguanidine (1,3-diphenylguanidine) was investigated in aprotic (acetonitrile, acetone, dimethyl sulfoxide, dimethyl formamide, propyleneoxide, nitromethane) and alcoholic (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, benzyl alcohol) non-aqueous solvents at platinum electrode with cyclic voltammetry. Its concentration was 5 mM in most cases. In acetonitrile and acetone a sharp voltammetric peak appeared around 1 V vs. reference and currents measured in the subsequent scans showed that the electrode fouled quickly. In dimethyl formamide, the anodic peak heights decreased slowly in the subsequent scans but in dimethyl sulfoxide weak deactivation could be observed both in smaller and in higher concentration. In alcohols, continuous deactivation could be also observed during electrooxidation of N,N’-diphenylguanidine. The permeability studies showed that the structure of the formed polymer films varied significantly according to the solvent used for electrodeposition.


Chemosensors ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 25 ◽  
Author(s):  
Ersin Demir ◽  
Hulya Silah

A novel highly selective, sensitive and simple analytical technique was recommended for the investigation of anthelmintic veterinary drug oxyclozanide based on square wave anodic stripping voltammetry (SWASV) by using a carbon paste electrode (CPE). According to the cyclic voltammetric data, the oxidation and electron transfer processes of oxyclozanide were found as irreversible and adsorption-controlled, respectively. The voltammetric anodic peak response was characterized with respect to pH, accumulation potential, accumulation time, frequency and pulse amplitude, etc. Under these optimized experimental conditions, the anodic peak density of oxyclozanide was linear to oxyclozanide concentrations in the range from 0.058 to 4.00 mg/L. The described electrochemical method was successfully carried out for the oxyclozanide in pharmaceutical formulation and tap water with mean percentage recovery of 101.5 % and 102.2 %, respectively. The results of pharmaceutical formulation studies were statistically compared to the high-performance liquid chromatographic method.


2019 ◽  
Vol 65 (1) ◽  
pp. 133-138 ◽  
Author(s):  
László Kiss ◽  
Sándor Kunsági-Máté

In the first part of the work electropolymerisation of phenol was studied at glassy carbon electrode. Rapid fouling of its surface indicated the formation of coherent poly(phenyleneoxide) layer which was demonstrated by the repeated cyclic voltammetric scans. Effect of anodic pretreatment potential in acetonitrile solvent was also investigated and the results showed that at potentials higher than 2 V glassy carbon electrode becomes deactivated. Preanodisation of glassy carbon electrode at 3 V in acetonitrile resulted in diminished anodic peak currents by phenols. It was due to the partial deactivation of electrode surface and its extent increased with the pretreatment time. The electrooxidation of para-substituted phenols (p-Cl-phenol, p-NO2-phenol, p-tertbutylphenol, p-methoxyphenol) in acetonitrile resulted in no fouling layer on platinum electrode and the peak currents were significantly higher than in the first scan of unsubstituted phenol in the same concentration. Glassy carbon deactivated continuously by repeating the scans due to the solvent and bonding of products on the surface.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 847 ◽  
Author(s):  
Xuan Wan ◽  
Shihui Yang ◽  
Zhaotian Cai ◽  
Quanguo He ◽  
Yabing Ye ◽  
...  

This study reports facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide (MnO2NFs/NrGO) composite and its application on the simultaneous determination of dopamine (DA) and uric acid (UA). The microstructures, morphologies, and electrochemical performances of MnO2NFs/NrGO were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), respectively. The electrochemical experiments showed that the MnO2NFs/NrGO composites have the largest effective electroactive area and lowest charge transfer resistance. MnO2NFs/NrGO nanocomposites displayed superior catalytic capacity toward the electro-oxidation of DA and UA due to the synergistic effect from MnO2NFs and NrGO. The anodic peak currents of DA and UA increase linearly with their concentrations varying from 0.2 μM to 6.0 μM. However, the anodic peak currents of DA and UA are highly correlated to the Napierian logarithm of their concentrations ranging from 6.0 μM to 100 μM. The detection limits are 0.036 μM and 0.029 μM for DA and UA, respectively. Furthermore, the DA and UA levels of human serum samples were accurately detected by the proposed sensor. Combining with prominent advantages such as facile preparation, good sensitivity, and high selectivity, the proposed MnO2NFs/NrGO nanocomposites have become the most promising candidates for the simultaneous determination of DA and UA from various actual samples.


2018 ◽  
Vol 21 (7) ◽  
pp. 516-525 ◽  
Author(s):  
Abdulkadir Levent ◽  
Günay Önal

Aim and Objective: As is known, AA, EP and UA can also coexist in biological fluids. Therefore, the determination of the levels of these compounds in biological fluids is extremely important both for the diagnosis and treatment of the related diseases. In the presence of many interfering substances in biological fluids such as blood and urine samples, it is very important that these compounds can be selectively analyzed. Materials and Methods: All electrochemical experiments were performed using an Autolab PGSTAT 128N potentiostat. Before beginning the electrochemical measurements, the PGE was activated. The electrochemical pretreatment of PG was exercised by anodically +1.40 V for 60 s. Then, measurements were performed with CV (-0.4 V to 1.2 V) and DPV (-0.2 V to 0.7 V) for single and simultaneous voltammetric behaviour of AA, EP, and UA in the electrochemical method. Results: The anodic peak potentials of AA and UA were observed at about +0.32 V and +0.62 V, respectively. On the other hand, for EP, while anodic peak potential was observed at about +0.53 V, in the reverse scan, cathodic peak potentials were observed at about +0.41 V and +0.007 V. The reduction peak observed at +0.3 V with the oxidation peak observed at +0.53 V are the reversible peaks. In the method developed for the electrochemical simultaneous determination of AA, EP and UA using PGE with DPV technique in BR buffer solution (pH 4.0), the anodic peak potentials are sufficiently separated from each other. Conclusion: A voltammetric method was developed for the simultaneous determination of AA, EP and UA with PGE for the first time. Here, the most important thing is that the simultaneous determination of AA, EP and UA was successfully achieved with that targeted voltammetric method which was sensitive, low-cost, practical and well-repeated; and that these were proven to be selectively applicable in pharmaceutical products and biological liquids.


2018 ◽  
Author(s):  
Bernard Owusu Asimeng ◽  
Elvis Kwason Tiburu ◽  
Elsie Effah Kuafmann ◽  
Lily Peamka ◽  
Claude Fiifi Hayford ◽  
...  

AbstractThis study reports the electrochemical activities of a novel ion substituted-Hydroxyapatite material in contact with HeLa cells. The work was performed to evaluate the inhibitory effects of various concentrations of the material on the ion transfer mechanisms in HeLa cells. The materials (n=2: HAp1 and HAp3) were prepared at different stirring times fromAchatina achatinasnail shells and phosphate-containing solution. The structure of the materials and the trace elements concentration were evaluated using x-ray diffractometry and infrared spectrometry as well as atomic absorption spectroscopy. Electrochemical studies conducted on the cells, after 30 min of exposure to the materials, demonstrated differential responses as elucidated by cyclic voltammetry. The voltammograms revealed HAp1 to be non-redox whereas HAp3 was redox active. Minimal concentrations of HAp1 showed high anodic peak current when compared to the HeLa cells alone, indicating a hyperpolarization of the cells. The peak current gradually reduced as the concentration of HAp1 was increased, and then a sudden rise suggesting inhibition of the cell action potential. HAp3 showed a wavy pattern of the anodic peak current when the material concentration was varied. Peak currents of 0.92 and 0.57 nA were recorded for HAp1 and HAp3, respectively at the highest concentration of 5μL. The results suggest that different inhibitory mechanisms are at play on the voltage-gated ion channels of the cells, indicating the possibility of using the materials to achieve different cancer proliferation inhibition.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2130 ◽  
Author(s):  
Quanguo He ◽  
Jun Liu ◽  
Xiaopeng Liu ◽  
Yonghui Xia ◽  
Guangli Li ◽  
...  

Control and detection of sunset yellow is an utmost demanding issue, due to the presence of potential risks for human health if excessively consumed or added. Herein, cuprous oxide-electrochemically reduced graphene nanocomposite modified glassy carbon electrode (Cu2O-ErGO/GCE) was developed for the determination of sunset yellow. The Cu2O-ErGO/GCE was fabricated by drop-casting Cu2O-GO dispersion on the GCE surface following a potentiostatic reduction of graphene oxide (GO). Scanning electron microscope and X-ray powder diffractometer was used to characterize the morphology and microstructure of the modification materials, such as Cu2O nanoparticles and Cu2O-ErGO nanocomposites. The electrochemical behavior of sunset yellow on the bare GCE, ErGO/GCE, and Cu2O-ErGO/GCE were investigated by cyclic voltammetry and second-derivative linear sweep voltammetry, respectively. The analytical parameters (including pH value, sweep rate, and accumulation parameters) were explored systematically. The results show that the anodic peak currents of Cu2O-ErGO /GCE are 25-fold higher than that of the bare GCE, due to the synergistic enhancement effect between Cu2O nanoparticles and ErGO sheets. Under the optimum detection conditions, the anodic peak currents are well linear to the concentrations of sunset yellow, ranging from 2.0 × 10−8 mol/L to 2.0 × 10−5 mol/L and from 2.0 × 10−5 mol/L to 1.0 × 10−4 mol/L with a low limit of detection (S/N = 3, 6.0 × 10−9 mol/L). Moreover, Cu2O-ErGO/GCE was successfully used for the determination of sunset yellow in beverages and food with good recovery. This proposed Cu2O-ErGO/GCE has an attractive prospect applications on the determination of sunset yellow in diverse real samples.


CORROSION ◽  
10.5006/2923 ◽  
2018 ◽  
Vol 74 (11) ◽  
pp. 1214-1228 ◽  
Author(s):  
Abraham A. Becerra Araneda ◽  
Mariano A. Kappes ◽  
Martín A. Rodríguez ◽  
Ricardo M. Carranza

Pitting corrosion of Alloys 600, 690, and 800 (UNS N06600, N06690, and N08800) was studied in 1 M NaCl solution with different concentrations of thiosulfate (). Alloys exhibited vastly different electrochemical behavior, depending on the concentration and chromium content of the alloy. Alloy 600 exhibited a breakdown and repassivation potential that decreased with decreasing concentration, in the range from 1 M to 10−4 M. Breakdown and repassivation potentials decreased about 300 mV and 600 mV, respectively, when 10−4 M was added to a 1 M NaCl solution. For Alloys 690 and 800, additions of in the range of 1 M to 0.01 M caused a decrease in the breakdown and repassivation potentials. Dilute solutions were more aggressive, and a 0.01 M addition of to a 1 M NaCl solution caused a decrease in breakdown and repassivation potentials of about 300 mV. In a solution containing 0.001 M Na2S2O3 + 1 M NaCl, Alloys 690 and 800 showed two different submodes of pitting, each one of them existing at a different range of potential. Chloride pitting corrosion was observed at high potentials and was characterized by pits with a lacy cover. The stable pit initiation potential associated with this process in both alloys was near 300 mVAg/AgCl and was preceded by frequent metastable events. Chloride plus pitting was observed at low potentials (near −225 mVAg/AgCl) and was characterized by hemispherical pits. In potentiodynamic curves, this submode of pitting showed a characteristic anodic peak of approximately 120 mV width and a maximum current density of 10 μA/cm2 for both alloys. Potentiostatic tests at potentials within this anodic peak led to stable pit growth. Those pits could be repassivated by scanning the potential either in noble or active directions. Low-potential and high-potential pitting submodes were separated by a stable passivity range, as determined by potentiodynamic curves. Upon a further decrease in concentration down to 10−4 M, only high-potential pitting corrosion was observed, with pitting and repassivation potentials similar than those in 1 M NaCl solution.


Sign in / Sign up

Export Citation Format

Share Document