Sexual selection, sexual isolation and the evolution of song in the Drosophila repleta group of species

1986 ◽  
Vol 34 (2) ◽  
pp. 421-429 ◽  
Author(s):  
Arthur W. Ewing ◽  
Jaleel A. Miyan
2002 ◽  
Vol 62 (4a) ◽  
pp. 573-583 ◽  
Author(s):  
C. T. A. COSTA ◽  
F. M. SENE

The aim of this work was to characterize the male courtship song pattern of various species of the fasciola subgroup and to determine the level of variation both within and among species. The parameters analyzed were intrapulse interval (PI), interpulse interval (IPI), and intrapulse frequency (IF). Six different species were analyzed: D. coroica (three populations), D. ellisoni, D. fascioloides, D. moju, D. onca, and D. rosinae (one population each). There were significant differences among the six species for these three courtship song parameters. The IPI was the most variable parameter among these species, suggesting that this parameter is important for female discrimination. Four different hypotheses could explain this variation: 1. different selection pressures with absence of flow gene; 2. intraspecific sexual selection; 3. sympatric effects on song evolution; and 4. genetic drift. The PI was the only parameter that was significantly different among the three population of D. coroica. Low variability among populations within the same species was already observed for other subgroups and could be explained by the following hypotheses: strong selection acting on the song parameters, gene flow, or recent colonization from a common source. Additional studies of the courtship song of other species of the fasciola subgroup, as well as for other subgroups of the repleta group, and studies, using molecular makers, that focus on the genetic basis of the differences among these species in courtship song would allow us to evaluate the association of courtship song and sexual isolation in these species, and would also help us to understand the evolution of these behavioural differences.


Evolution ◽  
2000 ◽  
Vol 54 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Emilio Rolán-Alvarez ◽  
Armando Caballero

1985 ◽  
Vol 27 (4) ◽  
pp. 405-409 ◽  
Author(s):  
Bashisth N. Singh ◽  
Sujata Chatterjee

Male-choice experiments using five isofemale lines of Drosophila ananassae originating from different localities were performed to study sexual isolation within the species. In most of the crosses homogamic matings outnumber heterogamic ones, and deviation from randomness is statistically significant in 11 of 20 crosses. This provides evidence for positive assortative mating within D. ananassae. Isolation indices range from −0.057 to 0.555. Eleven positive isolation indices are significantly greater than zero. Both types of sexual isolation, symmetrical and asymmetrical, have been observed among different strains. Thus the present results clearly indicate that the laboratory strains of D. ananassae have developed behavioural reproductive isolation as a result of genetic divergence.Key words: Drosophila, assortive mating, sexual selection, behaviour.


2012 ◽  
Vol 58 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Jaime L. Grace ◽  
Kerry L. Shaw

Abstract Sexual selection by female choice can shape the evolution of male traits within populations, since the most attractive males experience an increase in fitness through elevated mating success. Speciation by sexual selection occurs when evolution in traits and preferences within populations causes differentiation among populations, such that females in alternative populations prefer sexual signals of their own population relative to others. Differentiated traits and preferences thereby play an active role in limiting gene flow between divergent populations. The effectiveness of differentiated preferences in maintaining differentiated male signals against the homogenizing effects of gene flow across populations will be limited by both the degree to which females can discriminate against non-local males, and the breeding values of traits and preferences. Populations of the Hawaiian cricket Laupala cerasina have diverged in pulse rate, a sexually selected male signal, and female acoustic preference for pulse rate. Gene flow between neighboring populations may be reduced if migrants from sexually diverged populations experience reduced mating success. We show that females discriminate among divergent songs characteristic of neighboring populations, that differences among populations in song and preference breed true in a common environment, and that mean preferences for each population closely match the mean pulse rates. Divergence in preference was observed only between populations that also differed in song. Along with a striking ability to discriminate slight differences in song, correlated evolution of song and preference within populations could be a mechanism that promotes assortative mating among populations, thereby reducing gene flow, and leading to speciation in Laupala.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142050 ◽  
Author(s):  
Dean M. Castillo ◽  
Leonie C. Moyle

Sexual selection and sexual conflict are considered important drivers of speciation, based on both theoretical models and empirical correlations between sexually selected traits and diversification. However, whether reproductive isolation between species evolves directly as a consequence of intrapopulation sexual dynamics remains empirically unresolved, in part because knowledge of the genetic mechanisms (if any) connecting these processes is limited. Here, we provide evidence of a direct mechanistic link between intraspecies sexual selection and reproductive isolation. We examined genes with known roles in intraspecific sperm competition (ISC) in D. melanogaster and assayed their impact on conspecific sperm precedence (CSP). We found that two such genes ( Acp36DE and CG9997 ) contribute to both offensive sperm competition and CSP; null/knockdown lines both had lower competitive ability against D. melanogaster conspecifics and were no longer able to displace heterospecific D. simulans sperm in competitive matings. In comparison, Sex Peptide ( Acp70A )—another locus essential for ISC—does not contribute to CSP. These data indicate that two loci important for sperm competitive interactions have an additional role in similar interactions that enforce post-mating reproductive isolation between species, and show that sexual selection and sexual isolation can act on the same molecular targets in a gene-specific manner.


2009 ◽  
Vol 5 (4) ◽  
pp. 517-520 ◽  
Author(s):  
Megan L Head ◽  
Emily A. Price ◽  
Janette W. Boughman

Ecological speciation can be driven by divergent natural and/or sexual selection. The relative contribution of these processes to species divergence, however, is unknown. Here, we investigate how sexual selection in the form of male and female mate preferences contributes to divergence of body size. This trait is known be under divergent natural selection and also contributes to sexual isolation in species pairs of threespine sticklebacks ( Gasterosteus aculeatus ). We show that neither female nor male size preferences contribute to body size divergence in this species pair, suggesting that size-based sexual isolation arises primarily through natural selection.


2016 ◽  
Author(s):  
A. Carvajal-Rodríguez

AbstractIn this work, mate choice is modeled by means of the abstract concept of mutual mating propensity. This only assumes that different type of couples can have different mating success. The model is adequate for any population where mating occurs among distinct types. There is no extra assumption about particular mating scheme or preference model. The concept of mutual mating propensity permits to express the observed change in the mating phenotypes as the gain in information with respect to random mating. The obtained expression is a form of the Price equation in which the mapping between ancestral and descendant population is substituted by a mapping between random mating and non random mating population.At the same time, this framework provides the connection between mate choice and the exact mathematical partition of the choice effects, namely sexual isolation, sexual selection and a mixed effect. The sexual selection component is the sum of the intra-sexual male and female selection.The proposed framework helps to unveil previously hidden invariants. For example, if the mutual preference between partner types is multiplicative there is no sexual isolation (inter-sexual selection) effect on the frequencies, i.e. the only possible effect of mate choice is intra-sexual selection. On the contrary, whatever the contribution of each partner to the mutual preference, if it comes as a non-multiplicative factor, there is at least an inter-sexual selection detectable effect.This new view over the mate choice problem, permits to develop general mating propensity models and to make predictions of the mate choice effects that may emerge from such models. This possibility opens up the way for setting a general theory of model fitting and multimodel inference for mate choice.Thus, it is suggested that the proposed framework, by describing mate choice as the flow of information due to non-random mating, provides a new important setting for exploring different mating models and their consequences.


Sign in / Sign up

Export Citation Format

Share Document