The diacylglycerol kinase inhibitor R 59022 potentiates bombesin stimulation of protein kinase C activity and DNA synthesis in swiss 3T3 cells

1988 ◽  
Vol 155 (2) ◽  
pp. 561-568 ◽  
Author(s):  
Clive Morris ◽  
Peter Rice ◽  
Enrique Rozengurt
1989 ◽  
Vol 258 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D M Blakeley ◽  
A N Corps ◽  
K D Brown

Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.


1993 ◽  
Vol 289 (1) ◽  
pp. 283-287 ◽  
Author(s):  
L Pang ◽  
S J Decker ◽  
A R Saltiel

Both bombesin and epidermal growth factor (EGF) are potent mitogens in Swiss 3T3 cells that nonetheless have dissimilar receptor structures. To explore possible common intracellular events involved in the stimulation of cellular growth by these two peptides, we have evaluated the regulation of the mitogen-activated protein (MAP) kinase. Exposure of Swiss 3T3 cells to bombesin, EGF or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) causes the rapid and transient stimulation of the enzyme activity. Pretreatment of cells with the protein kinase inhibitor H-7, or down-regulation of cellular protein kinase C by prolonged exposure to PMA, causes a decrease of over 90% in the activation of MAP kinase by bombesin. In contrast, these treatments have no effect on the stimulation of MAP kinase by EGF. The stimulation of MAP kinase activity by bombesin is dose-dependent, occurring over a narrow concentration range of the peptide. Both EGF and bombesin stimulate the phosphorylation of an immunoprecipitable MAP kinase protein migrating at 42 kDa on SDS/PAGE. Phosphoamino acid analysis of this phosphorylated protein reveals that EGF and bombesin stimulate phosphorylation on tyrosine, threonine and serine residues. Tyrosine phosphorylation of the enzyme, as evaluated by antiphosphotyrosine blotting of the immunoprecipitated protein, reveals that the time course of phosphorylation by both mitogens correlates with stimulation of enzyme activity. These results provide further evidence for the convergence of discrete pathways emanating from tyrosine kinase and G-protein-linked receptors in the regulation of MAP kinase.


1989 ◽  
Vol 263 (2) ◽  
pp. 581-587 ◽  
Author(s):  
S J Cook ◽  
M J O Wakelam

A method for the rapid and quantitative separation of glycerophosphocholine, choline phosphate and choline upon ion-exchange columns is described. The method has been utilized to examine the stimulation of phosphatidylcholine breakdown in quiescent Swiss 3T3 cells in response to bombesin and 12-O-tetradecanoylphorbol 13-acetate (TPA). The stimulated generation of choline is shown to precede that of choline phosphate, with no effect upon glycerophosphocholine levels; but was attenuated in cells in which protein kinase C activity was down-regulated. The results thus suggest that stimulation of the cells with either bombesin or TPA activates phospholipase D-catalysed phosphatidylcholine breakdown by a common mechanism involving the activation of protein kinase C.


1989 ◽  
Vol 264 (2) ◽  
pp. 509-515 ◽  
Author(s):  
B D Price ◽  
J D H Morris ◽  
A Hall

The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase.


Sign in / Sign up

Export Citation Format

Share Document