inositol lipids
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 4)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Author(s):  
S. L. Heaver ◽  
H. H. Le ◽  
P. Tang ◽  
A. Baslé ◽  
J. Marles-Wright ◽  
...  

AbstractUbiquitous in eukaryotes, inositol lipids have finely tuned roles in cellular signaling and membrane homeostasis. In Bacteria, however, inositol lipid production is rare. Recently, the prominent human gut bacterium Bacteroides thetaiotaomicron (BT) was reported to produce inositol lipids, including inositol sphingolipids, but the pathways remain ambiguous and their prevalence unclear. Here, we investigated the gene cluster responsible for inositol lipid synthesis in BT using a novel strain with inducible control of sphingolipid synthesis. We characterized the biosynthetic pathway from myo-inositol-phosphate (MIP) synthesis to phosphoinositol-dihydroceramide, including structural and kinetic studies of the enzyme MIP synthase (MIPS). We determined the crystal structure of recombinant BT MIPS with bound NAD cofactor at 2.0 Å resolution, and identified the first reported phosphatase for the conversion of bacterially-derived phosphatidylinositol phosphate (PIP) to phosphatidylinositol (PI). Transcriptomic analysis indicated inositol production is nonessential but its loss alters BT capsule expression. Bioinformatic and lipidomic comparisons of Bacteroidetes species revealed a novel second putative pathway for bacterial PI synthesis without a PIP intermediate. Our results indicate that inositol sphingolipid production, via one of the two pathways, is widespread in host-associated Bacteroidetes, and may be implicated in host interactions both indirectly via the capsule and directly through inositol lipid provisioning.


2020 ◽  
Vol 168 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Takashi Baba ◽  
Tamas Balla

Abstract Inositol phospholipids are low-abundance regulatory lipids that orchestrate diverse cellular functions in eukaryotic organisms. Recent studies have uncovered involvement of the lipids in multiple steps in autophagy. The late endosome–lysosome compartment plays critical roles in cellular nutrient sensing and in the control of both the initiation of autophagy and the late stage of eventual degradation of cytosolic materials destined for elimination. It is particularly notable that inositol lipids are involved in almost all steps of the autophagic process. In this review, we summarize how inositol lipids regulate and contribute to autophagy through the endomembrane compartments, primarily focusing on PI4P and PI(4,5)P2.


2017 ◽  
pp. 2286-2289
Author(s):  
Matilda Katan
Keyword(s):  

2016 ◽  
Vol 57 (11) ◽  
pp. 1987-1994 ◽  
Author(s):  
Robin F. Irvine

2015 ◽  
pp. 1-4
Author(s):  
Matilda Katan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document