kinase inhibitor
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-9
Paul Frankel ◽  
Chris Ruel ◽  
An Uche ◽  
Edwin Choy ◽  
Scott Okuno ◽  

Background. This single-arm, multicenter, phase 2 study evaluated the safety and antitumor activity of pazopanib in patients with unresectable, pulmonary metastatic osteosarcoma. Patients and Methods. Patients with pulmonary metastatic osteosarcoma unresponsive to chemotherapy were eligible. Patients who received prior tyrosine kinase inhibitor therapy were excluded. Pazopanib at 800 mg once daily was administered for 28-day cycles. Tumor responses were evaluated by local radiology assessment 1 month prior to and after initiation of treatment to calculate tumor doubling time and after every even numbered cycle. The primary endpoints were progression-free survival at 4 months, concomitant with a demonstrated 30% increase in tumor doubling time relative to the pretreatment growth rate. Results. 12 patients (7 female) were enrolled. The study was terminated prematurely due to withdrawal of financial support by the sponsor. 8 subjects were eligible for the primary analysis, whereas 4 patients were in a predefined exploratory “slow-growing” cohort. In the “fast-growing” cohort, 3 of the 8 patients (37.5%) eligible for first-stage analysis were deemed “success” by the preplanned criteria, adequate to proceed to second-stage accrual. In addition, 1 of the 4 patients in the “slow-growing” cohort experienced a partial remission. Grade 1-2 diarrhea was the most common adverse event, and grade 3 events were infrequent. Conclusion. This study illustrates a novel method of demonstrating positive drug activity in osteosarcoma by increasing tumor doubling time, and this is further supported by a partial response in a patient with “slow-growing” disease. This trial is registered with NCT01759303.

2022 ◽  
Vol 12 (1) ◽  
Shingo Maeda ◽  
Kosei Sakai ◽  
Kenjiro Kaji ◽  
Aki Iio ◽  
Maho Nakazawa ◽  

AbstractEpidermal growth factor receptors 1 and 2 (EGFR and HER2) are frequently overexpressed in various malignancies. Lapatinib is a dual tyrosine kinase inhibitor that inhibits both EGFR and HER2. Although a phase III trial failed to show the survival benefits of lapatinib treatment after first-line chemotherapy in patients with EGFR/HER2-positive metastatic urothelial carcinoma, the efficacy of lapatinib for untreated urothelial carcinoma is not well defined. Here, we describe the therapeutic efficacy of lapatinib as a first-line treatment in a canine model of muscle-invasive urothelial carcinoma. In this non-randomized clinical trial, we compared 44 dogs with naturally occurring urothelial carcinoma who received lapatinib and piroxicam, with 42 age-, sex-, and tumor stage-matched dogs that received piroxicam alone. Compared to the dogs treated with piroxicam alone, those administered the lapatinib/piroxicam treatment had a greater reduction in the size of the primary tumor and improved survival. Exploratory analyses showed that HER2 overexpression was associated with response and survival in dogs treated with lapatinib. Our study suggests that lapatinib showed encouraging durable response rates, survival, and tolerability, supporting its therapeutic use for untreated advanced urothelial carcinoma in dogs. The use of lapatinib as a first-line treatment may be investigated further in human patients with urothelial carcinoma.

Haematologica ◽  
2022 ◽  
Katharina Woess ◽  
Sabine Macho-Maschler ◽  
Dorette S. Van Ingen Schenau ◽  
Miriam Butler ◽  
Caroline Lassnig ◽  

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase/signal transducer and activator of transcription pathway, which is central in cytokine signaling. Previously, germline TYK2 mutations have been described in two patients developing de novo T-cell acute lymphoblastic leukemias (T-ALLs) or precursor B-ALLs. The mutations (P760L and G761V) are located within the regulatory pseudokinase domain and lead to constitutive activation of TYK2. We demonstrate the transformation capacity of TYK2P760L in hematopoietic cell systems including primary bone marrow cells. In vivo engraftment of TYK2P760L-expressing cell lines led to development of leukemia. A kinase inhibitor screen uncovered that oncogenic TYK2 acts synergistically with the PI3K/AKT/mTOR and CDK4/6 pathways. Accordingly, the TYK2-specific inhibitor deucravacitinib (BMS986165) reduces cell viability of TYK2P760Ltransformed cell models and ex vivo cultured TYK2P760L-mutated patient-derived xenograft cells most efficiently when combined with mTOR or CDK4/6 inhibitors. Our study thereby pioneers novel treatment options for patients suffering from TYK2-driven acute leukemia.

F1000Research ◽  
2022 ◽  
Vol 10 ◽  
pp. 571
Siprianus Ugroseno Yudho Bintoro ◽  
Pradana Zaky Romadhon ◽  
Satriyo Dwi Suryantoro ◽  
Rusdi Zakki Aminy ◽  
Choirina Windradi ◽  

Priapism in chronic myeloid leukemia (CML) appears to be an infrequent manifestation as well as a crucial emergency. Here, we report an 18-year-old male presenting with a persistent erection of the penis for 20 days. We evaluated and compared the reported cases within 20 years discussing the management of priapism in CML. Cytoreductive therapy followed by leukapheresis, the administration of tyrosine kinase inhibitor, and intra-cavernosal blood aspiration may resolve the symptoms of priapism. Early intervention for cytoreduction and aspiration are the pivotal keys to successfully impeding the complications.

2022 ◽  
Vol 12 (1) ◽  
Shohei Kawakami ◽  
Mitsuyo Tsuma-Kaneko ◽  
Masakazu Sawanobori ◽  
Tomoko Uno ◽  
Yoshihiko Nakamura ◽  

AbstractIn this study, we examined the antileukemic effects of pterostilbene, a natural methylated polyphenol analog of resveratrol that is predominantly found in berries and nuts, using various human and murine leukemic cells, as well as bone marrow samples obtained from patients with leukemia. Pterostilbene administration significantly induced apoptosis of leukemic cells, but not of non-malignant hematopoietic stem/progenitor cells. Interestingly, pterostilbene was highly effective in inducing apoptosis of leukemic cells harboring the BCR/ABL fusion gene, including ABL tyrosine kinase inhibitor (TKI)-resistant cells with the T315I mutation. In BCR/ABL+ leukemic cells, pterostilbene decreased the BCR/ABL fusion protein levels and suppressed AKT and NF-κB activation. We further demonstrated that pterostilbene along with U0126, an inhibitor of the MEK/ERK signaling pathway, synergistically induced apoptosis of BCR/ABL+ cells. Our results further suggest that pterostilbene-promoted downregulation of BCR/ABL involves caspase activation triggered by proteasome inhibition-induced endoplasmic reticulum stress. Moreover, oral administration of pterostilbene significantly suppressed tumor growth in mice transplanted with BCR/ABL+ leukemic cells. Taken together, these results suggest that pterostilbene may hold potential for the treatment of BCR/ABL+ leukemia, in particular for those showing ABL-dependent TKI resistance.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 485
Ahmet Özdemir ◽  
Halilibrahim Ciftci ◽  
Belgin Sever ◽  
Hiroshi Tateishi ◽  
Masami Otsuka ◽  

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.

Katharina Joechle ◽  
Huda Jumaa ◽  
Kerstin Thriene ◽  
Claus Hellerbrand ◽  
Birte Kulemann ◽  

Cholangiocarcinoma (CCA) is a rare but highly aggressive tumor entity for which systemic therapies only showed limited efficacy so far. As OSI-027—a dual kinase inhibitor targeting both mTOR complexes, mTORC1 and mTORC2 - showed improved anti-cancer effects, we sought to evaluate its impact on the migratory and metastatic capacity of CCA cells in vitro. We found that treatment with OSI-027 leads to reduced cell mobility and migration as well as a reduced surviving fraction in colony-forming ability. While neither cell viability nor proliferation rate was affected, OSI-027 decreased the expression of MMP2 and MMP9. Moreover, survival as well as anti-apoptotic signaling was impaired upon the use of OSI-027 as determined by AKT and MAPK blotting. Dual targeting of mTORC1/2 might therefore be a viable option for anti-neoplastic therapy in CCA.

2022 ◽  
Daniel T Bowers ◽  
Justin L Brown

Abstract Mechanotransduction arises from information encoded in the shape of materials such as curvature. It induces activation of small GTPase signaling affecting cell phenotypes including differentiation. We carried out a set of preliminary experiments to test the hypothesis that curvature (1/radius) would also affect cell motility due to signal pathway crosstalk. High molecular weight poly (methyl methacrylate) straight nanofibers were electrospun with curvature ranging from 41 to 1 μm−1 and collected on a passivated glass substrate. The fiber curvature increased mouse mesenchymal stem cell aspect ratio (P < 0.02) and decreased cell area (P < 0.01). Despite little effect on some motility patterns such as polarity and persistence, we found selected fiber curvatures can increase normalized random fibroblastic mouse embryonic cell (MEF) migration velocity close to 2.5 times compared with a flat surface (P < 0.001). A maximum in the velocity curve occurred near 2.5 μm−1 and may vary with the time since initiation of attachment to the surface (range of 0–20 h). In the middle range of fiber curvatures, the relative relationship to curvature was similar regardless of treatment with Rho-kinase inhibitor (Y27632) or cdc42 inhibitor (ML141), although it was decreased on most curvatures (P < 0.05). However, below a critical curvature threshold MEFs may not be able to distinguish shallow curvature from a flat surface, while still being affected by contact guidance. The preliminary data in this manuscript suggested the large low curvature fibers were interpreted in a manner similar to a non-curved surface. Thus, curvature is a biomaterial construct design parameter that should be considered when specific biological responses are desired. Statement of integration, innovation, and insight  Replacement of damaged or diseased tissues that cannot otherwise regenerate is transforming modern medicine. However, the extent to which we can rationally design materials to affect cellular outcomes remains low. Knowing the effect of material stiffness and diameter on stem cell differentiation, we investigated cell migration and signaling on fibrous scaffolds. By investigating diameters across orders of magnitude (50–2000 nm), we identified a velocity maximum of ~800 nm. Furthermore, the results suggest large fibers may not be interpreted by single cells as a curved surface. This work presents insight into the design of constructs for engineering tissues.

Sign in / Sign up

Export Citation Format

Share Document