Effect of superoxide and lipid peroxide on cytosolic free calcium concentration in cultured pig aortic endothelial cells

1988 ◽  
Vol 152 (1) ◽  
pp. 301-307 ◽  
Author(s):  
Jiro Hirosumi ◽  
Yasuyoshi Ouchi ◽  
Masae Watanabe ◽  
Jun Kusunoki ◽  
Tetsuro Nakamura ◽  
...  
2001 ◽  
Vol 281 (3) ◽  
pp. H1156-H1162 ◽  
Author(s):  
Stéphane Budel ◽  
Alexander Schuster ◽  
Nikos Stergiopoulos ◽  
Jean-Jacques Meister ◽  
Jean-Louis Bény

We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca2+]i) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca2+]i, were found to indirectly elevate [Ca2+]i in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca2+]i, yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% ( P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca2+]i can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.


1988 ◽  
Vol 255 (3) ◽  
pp. E338-E346 ◽  
Author(s):  
R. E. Kramer

Studies were conducted to examine the effects of angiotensin II on cytosolic free calcium concentration in bovine adrenal glomerulosa cells maintained in primary culture. The calcium indicator, fura-2, and discontinuous dual-wavelength fluorescence spectroscopy were used to measure cytosolic free calcium in superfused adherent cell monolayers. Basal cytosolic free calcium concentration was 63.7 +/- 3.3 nM. The threshold concentration for angiotensin II-stimulated increases in cytosolic calcium was 10(-14)-10(-13) M, and maximal elevation of cytosolic calcium was produced by 10(-9) M angiotensin II. Angiotensin II (10(-13) M) produced a gradual increase in cytosolic calcium concentration that plateaued after 3-5 min of superfusion at a level approximately 1.2 times that of control cells. The calcium signal invoked by a maximal concentration (10(-9) M) of angiotensin II, in contrast, was characterized by an immediate, intense (approximately 8-fold) increase in cytosolic calcium concentration that decayed within 5 min to a lower, but sustained, level 2.5-3 times that of control cells. The calcium signals invoked by intermediate concentrations (10(-12)-10(-10) M) of angiotensin II exhibited dose-dependent increases in magnitude and a gradual transition in nature between those invoked by threshold and maximal concentrations of the peptide. The effect of angiotensin II to increase cytosolic calcium concentration was accompanied by an increase in aldosterone output. The increase in steroidogenesis was most closely correlated with the magnitude of the initial calcium signal. At high concentrations (10(-10) and 10(-9) M) of angiotensin II, there was a clear dissociation between aldosterone output and the magnitude of the sustained calcium signal.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document