Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows

2000 ◽  
Vol 55 (11) ◽  
pp. 1969-1979 ◽  
Author(s):  
Shu-San Hsiau ◽  
Yuh-Min Shieh
Soft Matter ◽  
2021 ◽  
Author(s):  
Riccardo Artoni ◽  
Michele Larcher ◽  
James T. Jenkins ◽  
Patrick Richard

The self-diffusivity tensor in homogeneously sheared dense granular flows is anisotropic. We show how its components depend on solid fraction, restitution coefficient, shear rate, and granular temperature.


2011 ◽  
Vol 51 (5) ◽  
pp. 1329-1342 ◽  
Author(s):  
Li-Tsung Sheng ◽  
Chih-Yu Kuo ◽  
Yih-Chin Tai ◽  
Shu-San Hsiau

1994 ◽  
Vol 116 (4) ◽  
pp. 785-791 ◽  
Author(s):  
M. L. Hunt ◽  
S. S. Hsiau ◽  
K. T. Hong

The present experiments are an investigation of the expansion and mixing that occur in a horizontal bed of particles subjected to vibrational accelerations in the direction parallel to gravity. The particles are colored-glass balls of uniform size; three different bed heights are examined of 6, 9, and 12 particle diameters. The vibrational frequency and amplitude are controlled separately to cover a range of acceleration levels from 1 to 5.5 times gravitational acceleration. The expansion results show that above a critical frequency, the bed begins to expand and the bed solid fraction decreases. This result is independent of the vibrational amplitude. Above a second critical frequency, the thickest beds show a further decrease in solid fraction; the minimum value of solid fraction for all bed heights is approximately 0.21 ± 0.03. The mixing results indicate that the mixing times decrease significantly with the expansion of the bed. However, the mixing times are greater as the bed depth increases. Unlike the expansion results, the mixing times depend on the amplitude of the vibration. A simple analysis of the flow is performed using a self-diffusion coefficient developed from dense-gas kinetic theory. The analysis qualitatively agrees with the experiments for the largest vibrational velocities and for the thinnest beds.


2000 ◽  
Vol 275 (3-4) ◽  
pp. 347-360 ◽  
Author(s):  
Payman Jalali ◽  
William Polashenski Jr ◽  
Piroz Zamankhan ◽  
Pertti Sarkomaa

2021 ◽  
Vol 249 ◽  
pp. 03035
Author(s):  
Matthew Macaulay ◽  
Pierre Rognon

This paper is concerned with the physical mechanisms controlling shear-induced diffusion in dense granular flows. The starting point is that of the granular random walk occurring in diluted granular flows, which underpins Bagnold’s scaling relating the coefficient of self-diffusion to the grain size and shear rate. By means of DEM simulations of plane shear flows, we measure some deviations from this scaling in dense granular flows with and without contact adhesion. We propose to relate these deviations to the development of correlated motion of grains in these flows, which impacts the magnitude of grain velocity fluctuations and their time persistence.


2018 ◽  
Vol 858 ◽  
Author(s):  
Matthew Macaulay ◽  
Pierre Rognon

We investigate the effect of intergranular cohesive forces on the properties of self-diffusion in dense granular flows. The study is based on a series of simulated plane shear flows at different inertial and cohesion numbers, in which transverse diffusivities are measured. Results evidence an increase in diffusivity by up to two orders of magnitude when introducing cohesion. This strong effect is analysed using the Green–Kubo framework, expressing the diffusivity in terms of instantaneous grain velocity fluctuations and their time correlation. This analysis shows that cohesion, by forming enduring clusters in the flow, enhances the velocity fluctuations and their time persistence, which both contribute to enhancing grain mixing and self-diffusion.


1991 ◽  
Vol 16 (3) ◽  
pp. 255-258 ◽  
Author(s):  
O Zik ◽  
J Stavans

Author(s):  
Martin C. Marinack ◽  
Venkata K. Jasti ◽  
C. Fred Higgs

The flow of solid granular material has been proposed as an alternative lubricant to conventional liquid lubricants. Since granular flows are also in numerous industrial and natural processes, they have been the subject of numerous studies. However, it has been a challenge to understand them because of their non-linear and multiphase behavior. There have been several past experiments, which have gained insight into granular flows. For example, previous work by the authors sheared grains in a two-dimensional annular shear cell by varying the velocity and roughness [1]. The present experimental work attempts to further insights from the previous work by specifically studying the interaction between rough surfaces and granular flows when the global solid fraction and grain materials are varied. A two dimensional annular (granular) shear cell, with a stationary outer ring and inner driving wheel, was used for this work. Digital particle tracking velocimetry was used to obtain local granular flow data such as velocity, local solid fraction, and granular temperature. Slip between the driving wall and first layer of granules is also extracted. This slip can be interpreted as momentum transfer or traction performance in granular systems such as wheel-terrain interaction. Parametric studies of global solid fraction and the material of the rough driving surface, attempt to show how these parameters affect the local granular flow properties.


1983 ◽  
Vol 80 ◽  
pp. 315-323 ◽  
Author(s):  
Marc Lindheimer ◽  
Jean-Claude Montet ◽  
Roselyne Bontemps ◽  
Jacques Rouviere ◽  
Bernard Brun

Sign in / Sign up

Export Citation Format

Share Document