Tool profile and tool path calculation for free-form thick-layered fabrication

1998 ◽  
Vol 30 (14) ◽  
pp. 1097-1110 ◽  
Author(s):  
Imre Horváth ◽  
Joris SM Vergeest ◽  
Johan J Broek ◽  
Zoltán Rusák ◽  
Bram de Smit
2012 ◽  
Vol 591-593 ◽  
pp. 396-399
Author(s):  
Ping Zhao ◽  
Wen Zhen Zhao ◽  
Zhen Yun Duan ◽  
Wen Hui Zhao

Due to tool wear and making errors, calculating the tool path based on the tool theory model has a great deal of influence on the accuracy of surface finishing machining. In order to solve the above problem, a photogrammetry method is used to extract the rotary cutter profile, and then the tool surface is get by letting the fitting profile curve revolves about the cutter axis, finally the cutter contact path is obtained based on the minimal orientation-distance algorithm. Experiments prove the cutter contact path is just on the theory surface of the workpiece. Therefore the accuracy of surface finishing machining will be greatly improved by the method.


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.


Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


2014 ◽  
Vol 53 ◽  
pp. 117-125 ◽  
Author(s):  
Qiang Zou ◽  
Juyong Zhang ◽  
Bailin Deng ◽  
Jibin Zhao

2011 ◽  
Vol 467-469 ◽  
pp. 906-911 ◽  
Author(s):  
Shu Kun Cao ◽  
Chang Lei Wang ◽  
Hui Zhang ◽  
Jie Lv ◽  
Chang Zhong Wu

Five-axis machining area of free surface is proposed by based on ARM9 and Linux open CNC system's overall structure of the CNC system hardware and software architecture. The system adopts the mode of the host computer PC, the lower computer ARM9 development board. PC completes the model of space surface and generates tool path by Simultaneous Multi-objective Optimization Algorithm on Free-form Surface Five-Axis Machining Tool Path and Tool Posture. The lower computer applies MYSQL database to storage and manage cutter location point information. Other modules access the database through ODBC standard interface. ARM9and PC utilize the way of cross-platform socket data transmission, the stepper motors is controlled by the way of constant acceleration - deceleration.


Procedia CIRP ◽  
2014 ◽  
Vol 14 ◽  
pp. 188-193 ◽  
Author(s):  
Adriano Fagali de Souza ◽  
Adriane Machado ◽  
Sueli Fischer Beckert ◽  
Anselmo Eduardo Diniz

Sign in / Sign up

Export Citation Format

Share Document