Application of Convex Hull for Tool Interference Avoidance in 5-Axis CNC Machining

Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.

2012 ◽  
Vol 443-444 ◽  
pp. 202-208 ◽  
Author(s):  
Shu Kun Cao ◽  
Li Song ◽  
Ke Dong ◽  
Kai Feng Song ◽  
Zhi Ming Sui

In view of all sorts of questions existing in CNC machining, such as machining vibration, so proposed a new method of free-form surface NC machining path optimization based on constant scallop height. This method first discrete surface boundary into the knife touch point based on the maximum tolerance, then in accordance with the maximum allowable scallop height generates circular trajectory with the same scallop, and finally connects adjacent curve path using the diagonal to achieve a continuous cutting scallop height tool path. This method can reduce the number of tools cut in and out parts, reduce the processing vibration and tool wear, and the surface processed has the same precision. This method has simple calculation, suitable for free-form surface of CNC highspeed and precision machining.


Author(s):  
Yuki Takanashi ◽  
Hideki Aoyama

Abstract Machining data (NC program) is generated by a CAM system, which generates the tool path from the target shape as a plane approximation surface instead of a free-form surface. Owing to this plane approximation, machining accuracy is reduced. In this paper, we propose a method to process the shape with high accuracy by defining the areas where accuracy is not required as a plane approximation surface and defining the part where accuracy is required as free-form surfaces.


Author(s):  
Hrishikesh Mane ◽  
S. S. Pande

Abstract This paper presents a curvature based adaptive iso-parametric strategy for the efficient machining of free form surfaces on 5-axis CNC machine using the flat end mill tool. One iso-parametric boundary of the surface is selected as the initial tool path. Set of cutter contact (CC) points are chosen adaptively on the initial tool path considering desired profile tolerance. Adjacent iso-parametric tool paths are computed adaptively based on the scallop height constraint unlike the traditional iso-parametric approach. The path topology is post-processed to generate the part program for 5-axis CNC machine in ISO format. The system was rigorously tested for various case studies by comparing the results with the traditional 5-axis iso-parametric tool path strategy, iso-scallop strategy and iso-planar strategy of a commercial software. Our system was found to generate efficient tool paths in terms of part quality, productivity and memory storage compared to the conventional strategies.


2013 ◽  
Vol 385-386 ◽  
pp. 726-730
Author(s):  
Ren Xian Geng ◽  
Hou Jun Qi ◽  
Xin Pan ◽  
Zhi Gang Liu

Using five-axis equipment for NC machining of free-form surface is an effective way to improve machining quality and machining efficiency, the surface shape and the five coordinate of the complexity of the machine tool movement led to its tool path planning technology is difficult. The paper aimed at the five coordinate NC machining of free-form surface and puts forward a five-axis NC machining method based on triangular facet model. The research based on triangular facet model, using constant scallop height method to calculate the step distance and improve the cutting efficiency to a great extent. In the process, tool path is generated, combining with the method of configuration space interference free.


2012 ◽  
Vol 500 ◽  
pp. 440-446
Author(s):  
Lin Geng ◽  
Yun Feng Zhang

In this paper, a novel method is proposed to generate optimal 5-axis finish tool-paths regarding joint movements and machining efficiency. A modified genetic algorithm is used to search for the optimal posture sequence along a tool-path while interference avoidance and surface finish quality act as constraints. Case studies are then provided to prove the effectiveness of the algorithm.


2011 ◽  
Vol 55-57 ◽  
pp. 1932-1937
Author(s):  
Li Song ◽  
Shu Kun Cao ◽  
Kai Feng Song ◽  
Chang Zhong Wu ◽  
Wei Wei Song

The paper presented the development of free-form surface axis NC machining tool path optimization module. In the UG environment, have three-dimensional solid modeling to the surface, and then have the secondary development of free-form surfaces five-axis machining path optimization module through the UG/Open API and VC++6.0. This can realize NC processing path automatically generation and optimization after the three-dimensional modeling. Introduction


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


2011 ◽  
Vol 287-290 ◽  
pp. 2805-2809
Author(s):  
Ming Yu Huang ◽  
Xiu Juan Wu ◽  
Zhong Shi Jia ◽  
Hong Jun Ni ◽  
Jing Jing Lv ◽  
...  

Data acquisition and model reconstruction of free-form surfaces with holes were been studied, based on coordinate measuring machines. First, the structural process of the parts was analyzed, the method of combinate contact measurement with non-contact measurement were used to get point cloud; Then the point cloud were been preprocessed, feature curve extracted and solid modeled; Finally, the restructure model was been quality assessed and accuracy assessed. Using the measurement of combinated contact and non-contact can also meet both the precision requirement of key part and the fast reconstruction requirement of non-critical part, which has great significance on that part to fast and accurate reconstruction.


Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document