Purification of water containing heavy metals by chelating-enhanced ultrafiltration

Desalination ◽  
2002 ◽  
Vol 144 (1-3) ◽  
pp. 243-248 ◽  
Author(s):  
Antonina Kryvoruchko ◽  
Lyudmila Yurlova ◽  
Boris Kornilovich
2018 ◽  
Vol 0 (2(42)) ◽  
pp. 70-80
Author(s):  
О. Г. Горшкова ◽  
Т. В. Гудзенко ◽  
О. В. Волювач ◽  
І. П. Конуп ◽  
Т. О. Бєляєва

2021 ◽  
Vol 265 ◽  
pp. 04004
Author(s):  
Anzhella Rumyantseva ◽  
Inna Neporozhniaia ◽  
Elizaveta Denisova ◽  
Anastasia Mazurkevich

Accumulation of Cu and Pb by Alisma plantago-aquatica L. plants under laboratory conditions on separate solutions (3 MPC) and changes in the content of heavy metals (HM) when placed on distilled water (control) were studied. The phytoremediation potential of Alisma plantago-aquatica, taken from different stations, is assessed: from conditionally clean habitat located in the middle course of Yagorba river (Cherepovets region) and from conditionally polluted habitat located on the bank of Serovka river within Cherepovets city. It is established that irrespective of what stations are taken plants of Alisma plantago-aquatica, they actively accumulate heavy metals, but plants from conditionally clean habitat accumulate more. More effective in the purification of water from heavy metals is Alisma plantago-aquatica from conditionally clean habitat. Alisma plantago-aquatica specimens from different areas are capable of excretion of Cu and Pb ions, the leaves being the most important in this. Alisma has a good phytoremediation potential and is suitable for inclusion in the composition of bioplato to clean the water of small rivers from Cu and Pb.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document