Development of visual blocking of alpha activity - A brain topographic study in healthy children

1997 ◽  
Vol 103 (1) ◽  
pp. 117
Author(s):  
Z Martinovic
2009 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Maggie-Lee Huckabee

Abstract Research exists that evaluates the mechanics of swallowing respiratory coordination in healthy children and adults as well and individuals with swallowing impairment. The research program summarized in this article represents a systematic examination of swallowing respiratory coordination across the lifespan as a means of behaviorally investigating mechanisms of cortical modulation. Using time-locked recordings of submental surface electromyography, nasal airflow, and thyroid acoustics, three conditions of swallowing were evaluated in 20 adults in a single session and 10 infants in 10 sessions across the first year of life. The three swallowing conditions were selected to represent a continuum of volitional through nonvolitional swallowing control on the basis of a decreasing level of cortical activation. Our primary finding is that, across the lifespan, brainstem control strongly dictates the duration of swallowing apnea and is heavily involved in organizing the integration of swallowing and respiration, even in very early infancy. However, there is evidence that cortical modulation increases across the first 12 months of life to approximate more adult-like patterns of behavior. This modulation influences primarily conditions of volitional swallowing; sleep and naïve swallows appear to not be easily adapted by cortical regulation. Thus, it is attention, not arousal that engages cortical mechanisms.


2000 ◽  
Vol 14 (3) ◽  
pp. 151-158 ◽  
Author(s):  
José Luis Cantero ◽  
Mercedes Atienza

Abstract High-resolution frequency methods were used to describe the spectral and topographic microstructure of human spontaneous alpha activity in the drowsiness (DR) period at sleep onset and during REM sleep. Electroencephalographic (EEG), electrooculographic (EOG), and electromyographic (EMG) measurements were obtained during sleep in 10 healthy volunteer subjects. Spectral microstructure of alpha activity during DR showed a significant maximum power with respect to REM-alpha bursts for the components in the 9.7-10.9 Hz range, whereas REM-alpha bursts reached their maximum statistical differentiation from the sleep onset alpha activity at the components between 7.8 and 8.6 Hz. Furthermore, the maximum energy over occipital regions appeared in a different spectral component in each brain activation state, namely, 10.1 Hz in drowsiness and 8.6 Hz in REM sleep. These results provide quantitative information for differentiating the drowsiness alpha activity and REM-alpha by studying their microstructural properties. On the other hand, these data suggest that the spectral microstructure of alpha activity during sleep onset and REM sleep could be a useful index to implement in automatic classification algorithms in order to improve the differentiation between the two brain states.


Sign in / Sign up

Export Citation Format

Share Document