scholarly journals Extended finite element method for cohesive crack growth

2002 ◽  
Vol 69 (7) ◽  
pp. 813-833 ◽  
Author(s):  
Nicolas Moës ◽  
Ted Belytschko
2010 ◽  
Vol 163-167 ◽  
pp. 1837-1843 ◽  
Author(s):  
Hong Chang Qu ◽  
Xiao Zhou Xia ◽  
Zhi Qiang Xiong

In this paper, the extended finite element method (XFEM) is used for a discrete crack simulation of concrete using an adaptive crack growth algorithm. An interface model is proposed which includes normal and tangential displacements and allows the transfer of shear stresses through the interface. Different criteria for predicting the direction of the extension of a cohesive crack are conducted in the framework of the XFEM. On the basis of two examples, a comparison between the maximum circumferential stress criterion, the maximum energy release rate and the minimum potential energy criterion with experimental data has been carried out. The considered numerical simulations have confirmed the flexibility and effectiveness of the XFEM for the modelling of crack growth under general mode I and mixed-mode loading conditions.


2012 ◽  
Vol 588-589 ◽  
pp. 1926-1929
Author(s):  
Yu Zhou Sima ◽  
Fu Zhou Wang

An extended finite element method (XFEM) for multiple crack growth in asphalt pavement is described. A discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modeled by finite element with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Finally, the propagation path of the cracks in asphalt pavement under different load conditions is presented.


Sign in / Sign up

Export Citation Format

Share Document