residual strength
Recently Published Documents


TOTAL DOCUMENTS

1328
(FIVE YEARS 265)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 252 ◽  
pp. 113681
Author(s):  
Giada Frappa ◽  
Margherita Pauletta ◽  
Caterina Di Marco ◽  
Gaetano Russo

2022 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Zhiyao Zhu ◽  
Huilong Ren ◽  
Xiuhuan Wang ◽  
Nan Zhao ◽  
Chenfeng Li

The limit state function is important for the assessment of the longitudinal strength of damaged ships under combined bending moments in severe waves. As the limit state function cannot be obtained directly, the common approach is to calculate the results for the residual strength and approximate the limit state function by fitting, for which various methods have been proposed. In this study, four commonly used fitting methods are investigated: namely, the least-squares method, the moving least-squares method, the radial basis function neural network method, and the weighted piecewise fitting method. These fitting methods are adopted to fit the limit state functions of four typically sample distribution models as well as a damaged tanker and damaged bulk carrier. The residual strength of a damaged ship is obtained by an improved Smith method that accounts for the rotation of the neutral axis. Analysis of the results shows the accuracy of the linear least-squares method and nonlinear least-squares method, which are most commonly used by researchers, is relatively poor, while the weighted piecewise fitting method is the better choice for all investigated combined-bending conditions.


2022 ◽  
pp. 1-17
Author(s):  
Xiangdong Chang ◽  
Peng Yu-Xing ◽  
Deqiang Cheng ◽  
Zhencai Zhu ◽  
Dagang Wang ◽  
...  

Abstract Surface wear is one of the major causes of damage to wire ropes in multi-layer winding systems. This damage leads to performance degradation and affects the service safety of wire rope. To reveal the wear evolution and the performance degradation of wire rope in service, the correlations between the wear characteristic parameters and the residual strength were investigated. The results show that the variation in the wear parameters is affected by the wear distribution and the structure of the wire rope. The main wear mechanisms between wire ropes are adhesion wear and abrasive wear. Different wear parameters should be combined to evaluate the wear state of the wire rope. The tensile temperature rise could accurately reflect the wear evolution of the in-service wire rope under the condition of a large wear degree. The negative correlation between the residual strength and the wear area of the damaged rope samples is the strongest.


2022 ◽  
pp. 002199832110605
Author(s):  
Niels van Hoorn ◽  
Christos Kassapoglou ◽  
Sergio Turteltaub ◽  
Wouter van den Brink

Impact experiments of thick fabric carbon/epoxy laminate specimens, with small thickness ratio, are conducted at distinct energy levels and thicknesses to characterise the damage process. These specimens and loading conditions are representative of a new generation of critical structural components in aviation, such as wing spars, landing gear beams and fittings, that are increasingly being made entirely from composites. The tests address the need to better understand the damage process for specimens with a small thickness ratio since existing experimental impact data for large thickness ratio (thin laminates) may not be directly applicable. Two energy levels, two different fabric layups and two impact methods (drop-weight and gas-cannon) were used. Data from high-speed cameras were processed in a novel way, providing the force during impact. C-scans and micrographs were used to characterise damage. The results show that specimens with a thickness ratio of 5 (20 mm thick) experience more bending compared to specimens with a ratio 2.5 (40 mm thick). For gas-cannon impacts, this results in a higher delaminated area. The drop-weight impacts show almost no differences in damage size for the thickness range analysed. The influence of layup on the global impact response is negligible, but locally it can result in significant variations in dent depth. The dent depth scales linearly with the impact energy and the delaminated area linearly with the impact velocity. There is no clear correlation between the compression-after-impact failure mechanisms and the residual strength. Impact damage, at the current energy levels, showed a minimal reduction of residual strength.


2022 ◽  
Vol 170 ◽  
pp. 108565
Author(s):  
Damian Quinn ◽  
Adrian Murphy ◽  
Cara Harley ◽  
Trevor T. Robinson ◽  
Declan Nolan

2022 ◽  
pp. 103140
Author(s):  
Dong Jiang ◽  
Hui Qian ◽  
Yu Xu ◽  
Dahai Zhang ◽  
JinCheng Zheng

2021 ◽  
Vol 11 (24) ◽  
pp. 12141
Author(s):  
Xiaoli Li ◽  
Guitao Chen ◽  
Xiaoyan Liu ◽  
Jing Ji ◽  
Lianfu Han

In order to study the residual strength of buried pipelines with internal corrosion defects in seasonally frozen soil regions, we established a thermo-mechanical coupling model of a buried pipeline under differential frost heave by using the finite element elastoplastic analysis method. The material nonlinearity and geometric nonlinearity were considered as the basis of analysis. Firstly, the location of the maximum Mises equivalent stress in the inner wall of the buried non-corroded pipeline was determined. Furthermore, the residual strength of the buried pipeline with corrosion defects and the stress state of internal corrosion area in the pipeline under different defect parameters was analyzed by the orthogonal design method. Based on the data results of the finite element simulation calculation, the prediction formula of residual strength of buried pipelines with internal corrosion defects was obtained by SPSS (Statistical Product and Service Solutions) fitting. The prediction results were analyzed in comparison with the evaluation results of B31G, DNV RP-F101 and the experimental data of hydraulic blasting. The rationality of the finite element model and the accuracy of the fitting formula were verified. The results show that the effect degree of main factors on residual strength was in order of corrosion depth, corrosion length, and corrosion width. when the corrosion length exceeds 600 mm, which affects the influence degree of residual strength will gradually decrease. the prediction error of the fitting formula is small and the distribution is uniform, it can meet the prediction requirements of failure pressure of buried pipelines with internal corrosion defects in seasonally frozen soil regions. This method may provide some useful theoretical reference for the simulation real-time monitoring and safety analysis in the pipeline operation stage.


Sign in / Sign up

Export Citation Format

Share Document