Autoradiographic and biochemical assessment of rod outer segment renewal in the vitiligo (C57BL/6-mivit/mivit) mouse model of retinal degeneration

1995 ◽  
Vol 60 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Sylvia B. Smith ◽  
Dennis M. Defoe
PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138508 ◽  
Author(s):  
Rahel Zulliger ◽  
Shannon M. Conley ◽  
Maggie L. Mwoyosvi ◽  
Michael W. Stuck ◽  
Seifollah Azadi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avigail Beryozkin ◽  
Chen Matsevich ◽  
Alexey Obolensky ◽  
Corinne Kostic ◽  
Yvan Arsenijevic ◽  
...  

AbstractFAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.


Author(s):  
Takuma Saito ◽  
Toshihiro Takizawa

Cells and tissues live on a number of dynamic metabolic pathways, which are made up of sequential enzymatic cascades.Recent biochemical and physiological studies of vision research showed the importance of cGMP metabolism in the rod outer segment of visual cell, indicat ing that the photon activated rhodopsin exerts activation effect on the GTP binding protein, transducin, and this act ivated transducin further activates phosphodiesterase (PDEase) to result in a rapid drop in cGMP concentration in the cytoplasm of rod outer segment. This rapid drop of cGMP concentration exerts to close the ion channel on the plasma membrane and to stop of inward current brings hyperpolarization and evokes an action potential.These sequential change of enzyme activities, known as cGMP cascade, proceeds quite rapidly within msec order. Such a rapid change of enzyme activities, such as PDEase in rod outer segment, was not a matter of conventional histochemical invest igations.


Sign in / Sign up

Export Citation Format

Share Document