Clomiphene citrate-induced perturbations during meiotic maturation and cytogenetic abnormalities in mouse oocytes in vivo and in vitro

2000 ◽  
Vol 73 (3) ◽  
pp. 620-626 ◽  
Author(s):  
Steve N London ◽  
Daniel Young ◽  
Gloria Caldito ◽  
John B Mailhes
2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


1983 ◽  
Vol 147 (6) ◽  
pp. 633-639 ◽  
Author(s):  
N. Laufer ◽  
B.M. Pratt ◽  
A.H. DeCherney ◽  
F. Naftolin ◽  
M. Merino ◽  
...  

1999 ◽  
Vol 14 (Suppl_3) ◽  
pp. 308-308
Author(s):  
C.M.H. Combelles ◽  
M.J. Carabatsos ◽  
J.B. Mailhes ◽  
S.N. London ◽  
D.F. Albertini

2004 ◽  
Vol 19 (12) ◽  
pp. 2889-2899 ◽  
Author(s):  
Alexandra Sanfins ◽  
Carlos E. Plancha ◽  
Eric W. Overstrom ◽  
David F. Albertini

1997 ◽  
Vol 17 (4) ◽  
pp. 1759-1767 ◽  
Author(s):  
A Stutz ◽  
J Huarte ◽  
P Gubler ◽  
B Conne ◽  
D Belin ◽  
...  

In mouse oocytes, tissue-type plasminogen activator (tPA) mRNA is under translational control. The newly transcribed mRNA undergoes deadenylation and translational silencing in growing oocytes, while readenylation and translation occur during meiotic maturation. To localize regulatory elements controlling tPA mRNA expression, we identified regions of the endogenous transcript protected from hybridization with injected antisense oligodeoxynucleotides. Most of the targeted sequences in either the 5' untranslated region (5'UTR), coding region, or 3'UTR were accessible to hybridization, as revealed by inhibition of tPA synthesis and by RNase protection. Two protected regions were identified in the 3'UTR of tPA mRNA in primary oocytes: the adenylation control element (ACE) and the AAUAAA polyadenylation signal. These sequences were previously shown to be involved in the translational control of injected reporter transcripts. During the first hour of meiotic maturation, part of the ACE and the AAUAAA hexanucleotide became accessible to hybridization, suggesting a partial unmasking of the 3'UTR of this mRNA before it becomes translationally competent. Our results demonstrate that in vivo antisense oligodeoxynucleotide mapping can reveal the dynamics of regulatory features of a native mRNA in the context of the intact cell. They suggest that specific regions in the 3'UTR of tPA mRNA function as cis-acting masking determinants involved in the silencing of tPA mRNA in primary oocytes.


Sign in / Sign up

Export Citation Format

Share Document