germinal vesicle breakdown
Recently Published Documents


TOTAL DOCUMENTS

448
(FIVE YEARS 38)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ling-Ling Wei ◽  
Tian-Tian Chen ◽  
Bi-Yun Luo ◽  
Gao-Feng Qiu

Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the β-PDH isoforms and were designated as Es-RPCH and Es-β-PDH, respectively. Es-RPCH and Es-β-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-β-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-β-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-β-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-β-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-β-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-β-PDH on the oocyte meiotic maturation in E. sinensis.


2021 ◽  
Vol 91 (5) ◽  
pp. 483-493
Author(s):  
Omar Mardenli ◽  
◽  
Mahdi S. Mohammad Al-Kerwi ◽  
Ahmad Y. Alolo

In this study, two experiments were conducted to study the effect of both the follicle size and the cryoprotectants dimethyl sulfoxide (DMSO) and ethylene glycol (EG) on the main phases of nuclear maturation (Experiment I), cleavage stages and embryo quality (Experiment II) of Awassi sheep oocytes. Follicles were classified into two groups: small follicles (SF) (1-2 mm) and large follicles (LF) (> 2 mm). Oocytes were vitrified in three solutions: A (30% DMSO), B (30% EG) and C (15% DMSO and 15% EG). In Experiment I, the resulting vitrified-thawed oocytes in solution C achieved the best rates after the control group (fresh), respectively as the rates of maturation, germinal vesicle (GV), metaphase II(M-II), arrest, and lyses were 85.71% (P = 0.04), 8.33% (P = 0.02), 72.92% (P = 0.04); LF group, 15.25% (P = 0.04), and 5.08% (P = 0.04); SF group, respectively. In Experiment II, the same group of oocytes achieved the best rates after the control group, as the rates of fertilization, cleavage, 2-16 cell, Type3, blastocyst, and Type1 embryos were 63.28% (P = 0.001), 57.46% (P = 0.001), 40.38% (P = 0.04), 38.46% (P = 0.04); LF group, 30.00% (P = 0.01), and SF group 36.67% (P = 0.001), respectively, while the vitrified-thawed oocytes in A solution (SF group) reached the highest rate of Type 2 embryo quality (58.06%; P = 0.01). No significant differences were noticed in the germinal vesicle breakdown (GVBD), metaphase I (M-I) and morula stage. Vitrification of oocytes obtained from follicles with a diameter of more than 2 mm in a cocktail solution of DMSO (15%) and EG (15%) led to a significant increase in the yield and quality of the resulting sheep embryos.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Heng Chi ◽  
Zuowu Cao

Summary Many studies have shown that oestrogen affects late follicular development, but whether oestrogen is involved in other aspects of folliculogenesis remains unclear. In this study, two antagonists of oestrogen, tamoxifen and G15, were used to determine the effects of oestrogen on folliculogenesis. Mouse preantral follicles and cumulus–oocyte complexes (COCs) were cultured in vitro. The results showed that follicle growth stimulated using pregnant mare serum gonadotrophin (PMSG) was inhibited using tamoxifen, whether in vivo or in vitro. The average diameters, the maximum diameters of follicles and the numbers of follicles with a diameter of more than 300 μm decreased significantly following a 4-day culture with tamoxifen. G15, the antagonist of oestrogen via the membrane receptor, did not change follicular growth stimulated by PMSG in vitro. Results of in vitro maturation of COCs showed that germinal vesicle breakdown (GVBD) occurred spontaneously (95.1%) after 2 h in culture, and the GVBD ratio changed little with the addition of either oestrogen or 10 μM G15. However, first polar body (PBI) extrusion was driven by oestrogen markedly and supplementation with 10 μM G15 inhibited PBI extrusion (82.4% vs 55.0%) significantly. These results demonstrated that oestrogen promotes follicle growth through the nuclear receptor during follicle growth and then triggers the transition of metaphase to anaphase through the membrane receptor during meiotic resumption. So oestrogen plays a progressive role in the two phases of follicle growth and oocyte meiotic resumption.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuanlin He ◽  
Qiuzhen Chen ◽  
Jing Zhang ◽  
Jing Yu ◽  
Meng Xia ◽  
...  

Oocyte maturation is the foundation for developing healthy individuals of mammals. Upon germinal vesicle breakdown, oocyte meiosis resumes and the synthesis of new transcripts ceases. To quantitatively profile the transcriptomic dynamics after meiotic resumption throughout the oocyte maturation, we generated transcriptome sequencing data with individual mouse oocytes at three main developmental stages: germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). When clustering the sequenced oocytes, results showed that isoform-level expression analysis outperformed gene-level analysis, indicating isoform expression provided extra information that was useful in distinguishing oocyte stages. Comparing transcriptomes of the oocytes at the GV stage and the MII stage, in addition to identification of differentially expressed genes (DEGs), we detected many differentially expressed transcripts (DETs), some of which came from genes that were not identified as DEGs. When breaking down the isoform-level changes into alternative RNA processing events, we found the main source of isoform composition changes was the alternative usage of polyadenylation sites. With detailed analysis focusing on the alternative usage of 3′-UTR isoforms, we identified, out of 3,810 tested genes, 512 (13.7%) exhibiting significant switches of 3′-UTR isoforms during the process of moues oocyte maturation. Altogether, our data and analyses suggest the importance of examining isoform abundance changes during oocyte maturation, and further investigation of the pervasive 3′-UTR isoform switches in the transition may deepen our understanding on the molecular mechanisms underlying mammalian early development.


Author(s):  
Yuting Xiang ◽  
Chuanchuan Zhou ◽  
Yanyan Zeng ◽  
Qi Guo ◽  
Jiana Huang ◽  
...  

N4-acetylcytidine (ac4C), a newly identified epigenetic modification within mRNA, has been characterized as a crucial regulator of mRNA stability and translation efficiency. However, the role of ac4C during oocyte maturation, the process mainly controlled via post-transcriptional mechanisms, has not been explored. N-acetyltransferase 10 (NAT10) is the only known enzyme responsible for ac4C production in mammals and ac4C-binding proteins have not been reported yet. In this study, we have documented decreasing trends of both ac4C and NAT10 expression from immature to mature mouse oocytes. With NAT10 knockdown mediated by small interfering RNA (siRNA) in germinal vesicle (GV)-stage oocytes, ac4C modification was reduced and meiotic maturation in vitro was significantly retarded. Specifically, the rate of first polar body extrusion was significantly decreased with NAT10 knockdown (34.6%) compared to control oocytes without transfection (74.6%) and oocytes transfected with negative control siRNA (72.6%) (p < 0.001), while rates of germinal vesicle breakdown (GVBD) were not significantly different (p = 0.6531). RNA immunoprecipitation and high-throughput sequencing using HEK293T cells revealed that the modulated genes were enriched in biological processes associated with nucleosome assembly, chromatin silencing, chromatin modification and cytoskeletal anchoring. In addition, we identified TBL3 as a potential ac4C-binding protein by a bioinformatics algorithm and RNA pulldown with HEK293T cells, which may mediate downstream cellular activities. Taken together, our results suggest that NAT10-mediated ac4C modification is an important regulatory factor during oocyte maturation in vitro and TBL3 is a potential ac4C-binding protein.


2021 ◽  
Author(s):  
Xiaofei Jiao ◽  
Ning Liu ◽  
Yiding Xu ◽  
Huanyu Qiao

Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.


Author(s):  
Jing Wang ◽  
Zhiyong Zhuo ◽  
Xiao Ma ◽  
Yunjie Liu ◽  
Jing Xu ◽  
...  

It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10–3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10–5 M and 10–7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.


Author(s):  
Bing-Wang Zhao ◽  
Si-Min Sun ◽  
Ke Xu ◽  
Yuan-Yuan Li ◽  
Wen-Long Lei ◽  
...  

There are two important events in oocyte meiotic maturation, the G2/M transition and metaphase I progression. Thousands of proteins participate in regulating oocyte maturation, which highlights the importance of the ubiquitin proteasome system (UPS) in regulating protein synthesis and degradation. Skp1–Cullin–F-box (SCF) complexes, as the best characterized ubiquitin E3 ligases in the UPS, specifically recognize their substrates. F-box proteins, as the variable adaptors of SCF, can bind substrates specifically. Little is known about the functions of the F-box proteins in oocyte maturation. In this study, we found that depletion of FBXO34, an F-box protein, led to failure of oocyte meiotic resumption due to a low activity of MPF, and this phenotype could be rescued by exogenous overexpression of CCNB1. Strikingly, overexpression of FBXO34 promoted germinal vesicle breakdown (GVBD), but caused continuous activation of spindle assembly checkpoint (SAC) and MI arrest of oocytes. Here, we demonstrated that FBXO34 regulated both the G2/M transition and anaphase entry in meiotic oocytes.


Author(s):  
Luyao Zhang ◽  
Zichuan Wang ◽  
Tengfei Lu ◽  
Lin Meng ◽  
Yan Luo ◽  
...  

Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance—such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential—recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.


Sign in / Sign up

Export Citation Format

Share Document