Interferon-γ mediates total parenteral nutrition-associated loss of epithelial barrier function

2001 ◽  
Vol 120 (5) ◽  
pp. A191 ◽  
Author(s):  
Hua Yang ◽  
Daniel H. Teitelbaum
2014 ◽  
Vol 25 (18) ◽  
pp. 2710-2719 ◽  
Author(s):  
Christopher T. Capaldo ◽  
Attila E. Farkas ◽  
Roland S. Hilgarth ◽  
Susanne M. Krug ◽  
Mattie F. Wolf ◽  
...  

Tight junctions (TJs) are dynamic, multiprotein intercellular adhesive contacts that provide a vital barrier function in epithelial tissues. TJs are remodeled during physiological development and pathological mucosal inflammation, and differential expression of the claudin family of TJ proteins determines epithelial barrier properties. However, the molecular mechanisms involved in TJ remodeling are incompletely understood. Using acGFP-claudin 4 as a biosensor of TJ remodeling, we observed increased claudin 4 fluorescence recovery after photobleaching (FRAP) dynamics in response to inflammatory cytokines. Interferon γ and tumor necrosis factor α increased the proportion of mobile claudin 4 in the TJ. Up-regulation of claudin 4 protein rescued these mobility defects and cytokine-induced barrier compromise. Furthermore, claudins 2 and 4 have reciprocal effects on epithelial barrier function, exhibit differential FRAP dynamics, and compete for residency within the TJ. These findings establish a model of TJs as self-assembling systems that undergo remodeling in response to proinflammatory cytokines through a mechanism of heterotypic claudin-binding incompatibility.


2008 ◽  
Vol 294 (1) ◽  
pp. G139-G147 ◽  
Author(s):  
Xiaoyi Sun ◽  
Hua Yang ◽  
Keisuke Nose ◽  
Satoko Nose ◽  
Emir Q. Haxhija ◽  
...  

Loss of intestinal epithelial barrier function (EBF) is a major problem associated with total parenteral nutrition (TPN) administration. We have previously identified intestinal intraepithelial lymphocyte (IEL)-derived interferon-γ (IFN-γ) as a contributing factor to this barrier loss. The objective was to determine whether other IEL-derived cytokines may also contribute to intestinal epithelial barrier breakdown. C57BL6J male mice received TPN or enteral nutrition (control) for 7 days. IEL-derived interleukin-10 (IL-10) was then measured. A significant decline in IEL-derived IL-10 expression was seen with TPN administration, a cytokine that has been shown in vitro to maintain tight junction integrity. We hypothesized that this change in IEL-derived IL-10 expression could contribute to TPN-associated barrier loss. An additional group of mice was given exogenous recombinant IL-10. Ussing chamber experiments showed that EBF markedly declined in the TPN group. TPN resulted in a significant decrease of IEL-derived IL-10 expression. The expression of several tight junction molecules also decreased with TPN administration. Exogenous IL-10 administration in TPN mice significantly attenuated the TPN-associated decline in zonula occludens (ZO)-1, E-cadherin, and occludin expression, as well as a loss of intestinal barrier function. TPN administration led to a marked decline in IEL-derived IL-10 expression. This decline was coincident with a loss of intestinal EBF. As the decline was partially attenuated with the administration of exogenous IL-10, our findings suggest that loss of IL-10 may be a contributing mechanism to TPN-associated epithelial barrier loss.


Sign in / Sign up

Export Citation Format

Share Document