scholarly journals Glutamine Prevents Total Parenteral Nutrition-Associated Changes to Intraepithelial Lymphocyte Phenotype and Function: A Potential Mechanism for the Preservation of Epithelial Barrier Function

2010 ◽  
Vol 30 (2) ◽  
pp. 67-80 ◽  
Author(s):  
Keisuke Nose ◽  
Hua Yang ◽  
Xiaoyi Sun ◽  
Satoko Nose ◽  
Hiroyuki Koga ◽  
...  
2008 ◽  
Vol 294 (1) ◽  
pp. G139-G147 ◽  
Author(s):  
Xiaoyi Sun ◽  
Hua Yang ◽  
Keisuke Nose ◽  
Satoko Nose ◽  
Emir Q. Haxhija ◽  
...  

Loss of intestinal epithelial barrier function (EBF) is a major problem associated with total parenteral nutrition (TPN) administration. We have previously identified intestinal intraepithelial lymphocyte (IEL)-derived interferon-γ (IFN-γ) as a contributing factor to this barrier loss. The objective was to determine whether other IEL-derived cytokines may also contribute to intestinal epithelial barrier breakdown. C57BL6J male mice received TPN or enteral nutrition (control) for 7 days. IEL-derived interleukin-10 (IL-10) was then measured. A significant decline in IEL-derived IL-10 expression was seen with TPN administration, a cytokine that has been shown in vitro to maintain tight junction integrity. We hypothesized that this change in IEL-derived IL-10 expression could contribute to TPN-associated barrier loss. An additional group of mice was given exogenous recombinant IL-10. Ussing chamber experiments showed that EBF markedly declined in the TPN group. TPN resulted in a significant decrease of IEL-derived IL-10 expression. The expression of several tight junction molecules also decreased with TPN administration. Exogenous IL-10 administration in TPN mice significantly attenuated the TPN-associated decline in zonula occludens (ZO)-1, E-cadherin, and occludin expression, as well as a loss of intestinal barrier function. TPN administration led to a marked decline in IEL-derived IL-10 expression. This decline was coincident with a loss of intestinal EBF. As the decline was partially attenuated with the administration of exogenous IL-10, our findings suggest that loss of IL-10 may be a contributing mechanism to TPN-associated epithelial barrier loss.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aubrey N. Michi ◽  
Bryan G. Yipp ◽  
Antoine Dufour ◽  
Fernando Lopes ◽  
David Proud

AbstractHuman rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document