myd88 pathway
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 43)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
pp. 1-13
Author(s):  
Konstantinos Kyriakopoulos ◽  
Michael Katsimpoulas ◽  
Konstantinos S. Mylonas ◽  
Irene Lidoriki ◽  
Ioannis A. Ziogas ◽  
...  

<b><i>Background:</i></b> Pyometra (P) leads to sepsis and multiple organ dysfunction syndrome. Toll-like receptors (TLRs) recognize pathogens which can cause P. The aim of this study was to investigate TLR-7 and -9 via the MYD88 pathway and the nuclear factor kappa B (NFκB) response in the uterus of a P mouse model before and after ovariohysterectomy (RP) as well as potential lung injury. <b><i>Materials and Methods:</i></b> 200 female C57BL/6J mice were randomly divided into groups (<i>N</i> = 10/subgroup; sham 1, 2, 3, 7; P1, 2, 3, 7; 1RP1, 2, 3, 7; 2RP1, 2, 3, 7; 3RP1, 2, 3, 7) according to the day of euthanasia. Pathogens were administrated in the groups P and RP in order to induce P. <b><i>Results:</i></b> Alterations in blood chemistry, histopathology, and RT-qPCT analysis before (P) and after RP were observed. Significant correlations were also found between MYD88, NFκB, and TLR9 in P and RP groups in the lungs and in RP groups in the uterus, suggesting that the immune system responded via the TLR9-MYD88 pathway. <b><i>Conclusions:</i></b> This is the first report of immunohistochemical TLR-7 and -9 localization and of TLR-7, -9, MYD88, and NFκB mRNA expression in the uterus causing lung injury in a P mouse model.


2021 ◽  
pp. 175342592110513
Author(s):  
F. Linzee Mabrey ◽  
Eric D Morrell ◽  
Mark M Wurfel

COVID-19 is both a viral illness and a disease of immunopathology. Proximal events within the innate immune system drive the balance between deleterious inflammation and viral clearance. We hypothesize that a divergence between the generation of excessive inflammation through over activation of the TLR associated myeloid differentiation primary response (MyD88) pathway relative to the TIR-domain-containing adaptor-inducing IFN-β (TRIF) pathway plays a key role in COVID-19 severity. Both viral elements and damage associated host molecules act as TLR ligands in this process. In this review, we detail the mechanism for this imbalance in COVID-19 based on available evidence, and we discuss how modulation of critical elements may be important in reducing severity of disease.


2021 ◽  
pp. 106947
Author(s):  
Xin Zhao ◽  
Jinfan Tian ◽  
Yue Liu ◽  
Zhishuai Ye ◽  
Mingyue Xu ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2374
Author(s):  
Xi Liang ◽  
Zhe Zhang ◽  
Youyou Lv ◽  
Haiyan Lu ◽  
Tongjie Liu ◽  
...  

There has been an increasing number of studies on the interaction between active substances and probiotics to improve disease. Both krill oil (KO) and probiotics have the effect of improving atherosclerotic cardiovascular disease, but the combined effect has not been explored. Therefore, the purpose of this study was to explore the improvement effect of KO combined with probiotics on atherosclerosis. The atherosclerotic plaque area of ApoE−/− mice was detected after the intervention of KO, Bifidobacterium animalis subsp. lactis F1-7 (Bif. animalis F1-7), and KO combined with Bif. animalis F1-7. The results showed that Bif. animalis F1-7, KO, and KO combined with Bif. animalis F1-7 could significantly reduce the area of atherosclerotic plaque and improve the levels of serum lipids and inflammatory factors. They could regulate the farnesoid X receptor (FXR)/cholesterol 7-alpha hydroxylase (CYP7A1) pathway to reduce lipid accumulation. The intervention groups could also improve the inflammatory response by downregulating the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) pathway. The anti-inflammatory effect of the interaction group was significantly better than that of KO. It proved that Bif. animalis F1-7 might play a synergistic effect in the improvement of inflammation by KO to the alleviation of atherosclerosis.


2021 ◽  
Vol 99 ◽  
pp. 107930
Author(s):  
Cuicui Yang ◽  
Shili Gong ◽  
Xiaoping Chen ◽  
Mingyang Wang ◽  
Li Zhang ◽  
...  

2021 ◽  
Vol 10 (16) ◽  
pp. 3735
Author(s):  
Maciej Putowski ◽  
Krzysztof Giannopoulos

Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 743
Author(s):  
Ricardo Wesley Alberca ◽  
Eliane Gomes ◽  
Momtchilo Russo

Allergen-specific T helper (Th)2 cells orchestrate upon allergen challenge the development of allergic eosinophilic lung inflammation. Sensitization with alum adjuvant, a type 2 adjuvant, has been used extensively in animal models of allergic lung disease. In contrast, type 1 adjuvants like CpG-ODN, a synthetic toll-like receptor 9 agonist, inhibit the development of Th2 immunity. CpG-ODN induce type 1 and suppressive cytokines that influence Th2 cell differentiation. Here, we investigated the immune modulatory effect of CpG-ODN on allergic sensitization to OVA with alum focusing on dendritic cells (DCs) expressing the MyD88 molecule and the suppressive IL-10 cytokine. Using mice with specific cell deletion of MyD88 molecule, we showed that CpG-ODN suppressed allergic sensitization and consequent lung allergic inflammation signaling through the MyD88 pathway on dendritic cells, but not on B-cells. This inhibition was associated with an increased production of IL-10 in the bronchoalveolar lavage fluid. Sensitization to OVA with CpG-ODN of IL-10-deficient, but not wild-type mice, induced a shift towards Th1 pattern of inflammation. Employing bone marrow-derived dendritic cells (BM-DCs) pulsed with OVA for sensitizations with or without CpG-ODN, we showed that IL-10 is dispensable for the inhibition of allergic lung Th2 responses by CpG-ODN. Moreover, the lack of IL-10 on DCs was not sufficient for the CpG-ODN-induced immune-deviation towards a Th1 pattern. Accordingly, we confirmed directly the role of MyD88 pathway on DCs in the inhibition of allergic sensitization.


Author(s):  
Alianet Rodríguez ◽  
Janet Velázquez ◽  
Luis González ◽  
Tania Rodríguez-Ramos ◽  
Brian Dixon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document