Helicobacter pylori inhibits gastric acid secretion in intact bullfrog oxyntic mucosa in vitro

2001 ◽  
Vol 120 (5) ◽  
pp. A654
Author(s):  
Kengo Tokunaga ◽  
Akinori Yanaka ◽  
Hiroyuki Yamaguchi ◽  
Akifumi Tanaka ◽  
Kazuhiro Watanabe ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A654-A654
Author(s):  
K TOKUNAGA ◽  
A YANAKA ◽  
H YAMAGUCHI ◽  
A TANAKA ◽  
K WATANABE ◽  
...  

1997 ◽  
Vol 11 (5) ◽  
pp. 1000-1000
Author(s):  
V. Savarino ◽  
G. S. Mela ◽  
S. Vigneri

2005 ◽  
Vol 289 (6) ◽  
pp. G1061-G1066 ◽  
Author(s):  
Anna Berg ◽  
Stefan Redéen ◽  
Magnus Grenegård ◽  
Ann-Charlott Ericson ◽  
Sven Erik Sjöstrand

We have previously identified cells containing the enzyme nitric oxide (NO) synthase (NOS) in the human gastric mucosa. Moreover, we have demonstrated that endogenous and exogenous NO has been shown to decrease histamine-stimulated acid secretion in isolated human gastric glands. The present investigation aimed to further determine whether this action of NO was mediated by the activation of guanylyl cyclase (GC) and subsequent production of cGMP. Isolated gastric glands were obtained after enzymatic digestion of biopsies taken from the oxyntic mucosa of healthy volunteers. Acid secretion was assessed by measuring [14C]aminopyrine accumulation, and the concentration of cGMP was determined by radioimmunoassay. In addition, immunohistochemistry was used to examine the localization of cGMP in mucosal preparations after stimulation with the NO donor S-nitroso- N-acetylpenicillamine (SNAP). SNAP (0.1 mM) was shown to decrease acid secretion stimulated by histamine (50 μM); this effect was accompanied by an increase in cGMP production, which was histologically localized to parietal cells. The membrane-permeable cGMP analog dibuturyl-cGMP (db-cGMP; 0.1–1 mM) dose dependently inhibited acid secretion. Additionally, the effect of SNAP was prevented by preincubating the glands with the GC inhibitor 4 H-8-bromo-1,2,4-oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one (10 μM). We therefore suggest that NO in the human gastric mucosa is of physiological importance in regulating acid secretion. Furthermore, the results show that NO-induced inhibition of gastric acid secretion is a cGMP-dependent mechanism in the parietal cell involving the activation of GC.


2005 ◽  
Vol 521 (1-3) ◽  
pp. 139-143 ◽  
Author(s):  
Francesca Borrelli ◽  
Inmaculada Posadas ◽  
Raffaele Capasso ◽  
Gabriella Aviello ◽  
Valeria Ascione ◽  
...  

1996 ◽  
Vol 271 (3) ◽  
pp. G470-G476 ◽  
Author(s):  
G. V. Ohning ◽  
H. C. Wong ◽  
K. C. Lloyd ◽  
J. H. Walsh

The role of endogenous gastrin in oxyntic mucosal proliferation during feeding in the rat was studied by immunoneutralization with a gastrin-specific monoclonal antibody (MAb) (CURE 051091.5). The immunochemical characteristics of this antibody were characterized by competitive radioimmunoassay, and the in vivo immunoneutralizing properties were validated by measuring effects on gastric acid and pancreatic secretion. Oxyntic mucosal proliferation in response to feeding was measured in adult male rats after a 48-h fast using bromodeoxyuridine (BrdU) immunohistochemistry. Gastrin-specific MAb inhibited gastrin-17- but not pentagastrin-stimulated gastric acid secretion and had no effect on cholecystokinin (CCK)-stimulated pancreatic secretion. In contrast, a MAb specific for the common COOH-terminal pentapeptide of gastrin and CCK inhibited gastrin-17- and pentagastrin-stimulated gastric acid secretion and CCK-stimulated pancreatic secretion. Pretreatment with gastrin-specific MAb 8 h before refeeding significantly reduced by 61% the number of BrdU-labeled cells in the oxyntic mucosal proliferative zone compared with control MAb-treated rats. These results demonstrate the importance of endogenous gastrin in the proliferative response of the oxyntic mucosa to feeding in the rat.


2018 ◽  
Vol 154 (6) ◽  
pp. S-17
Author(s):  
Francesco Di Mario ◽  
Serena Scida ◽  
Marilisa Franceschi ◽  
Chiara Miraglia ◽  
Kryssia Rodriguez ◽  
...  

1984 ◽  
Vol 246 (3) ◽  
pp. G296-G304
Author(s):  
S. R. Vigna

Radioimmunoassay, radioreceptor assays, and bioassays were used to demonstrate that chicken brain and antrum extracts contain cholecystokinin (CCK)-like and gastrinlike peptides, respectively. C-terminal-specific radioimmunoassay of partially purified chicken CCK and gastrin gave dilution curves parallel to those of the mammalian peptides. Mouse cerebral cortical and rat pancreatic membrane radioreceptor assays were used to differentiate CCK- from gastrinlike peptides on the basis of the different CCK versus gastrin specificities of the two receptors. Confirmation of the biological activity of chicken brain CCK was obtained by stimulation of amylase secretion from rat pancreatic lobules in vitro. The specificity of this response was demonstrated by the inhibition of chicken CCK-stimulated amylase secretion by the specific CCK receptor antagonist dibutyryl cGMP. Chicken antral gastrin stimulated gastric acid secretion from the rat stomach in vivo. In contrast to previous hypotheses, it is proposed that chickens have significant amounts of an antral gastrinlike peptide and that therefore it is possible that gastrin is involved in the physiological regulation of gastric acid secretion in chickens.


Sign in / Sign up

Export Citation Format

Share Document