enzymatic digestion
Recently Published Documents


TOTAL DOCUMENTS

1040
(FIVE YEARS 241)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Hairui Ji ◽  
Le Wang ◽  
Furong Tao ◽  
Zhipeng Yao ◽  
Xuezhi Li ◽  
...  

Abstract The biomass pretreatment strategies using organic acids facilitate lignin removal and enhance the enzymatic digestion of cellulose. However, lignin always suffers a severe and irreversible condensation. The newly generated C-C bonds dramatically affect its further upgrading. In this study, we used a recyclable hydrotrope (p-Toluenessulfonic acid, p-TsOH) to dissolve lignin under mild condition and stabilized lignin with a quenching agent (formaldehyde, FA) during extraction, achieving both value-added lignin extraction and efficient enzymatic saccharification of cellulose. Approximately 63.7% of lignin was dissolved by 80% (wt. %) p-TsOH with 1.5% FA addition at 80 o C, 30 min. The obtained lignin was characterized by FTIR spectroscopy, TGA, 2D HSQC NMR spectroscopy, and GPC. The results indicated that the extracted lignin exhibited excellent properties, such as light color, a low molecular weight (Mw, 5371 g/mol), and a narrow polydispersity (Mw/Mn, 1.63). The pretreated substrate was converted to ethanol via a quasi-simultaneous saccharification and fermentation process (Q-SSF). After fermentation of 60 h, the ethanol concentration reached 38.7±3.3 g/L which was equivalent to a theoretical ethanol yield of 82.9±2.2% based on the glucan content, while the residual glucose concentration was only 4.69±1.4 g/L. In short, this pretreatment strategy protected lignin to form new C-C linkages and improved the enzymatic saccharification of glucan for high-titer ethanol production.


2022 ◽  
Vol 12 ◽  
Author(s):  
Nicolai D. Jablonowski ◽  
Markus Pauly ◽  
Murali Dama

Biomass from perennial plants can be considered a carbon-neutral renewable resource. The tall wheatgrass hybrid Szarvasi-1 (Agropyron elongatum, hereafter referred to as “Szarvasi”) belongs to the perennial Poaceae representing a species, which can grow on marginal soils and produce large amounts of biomass. Several conventional and advanced pretreatment methods have been developed to enhance the saccharification efficiency of plant biomass. Advanced pretreatment methods, such as microwave-assisted pretreatment methods are faster and use less energy compared to conventional pretreatment methods. In this study, we investigated the potential of Szarvasi biomass as a biorefinery feedstock. For this purpose, the lignocellulosic structure of Szarvasi biomass was investigated in detail. In addition, microwave-assisted pretreatments were applied to Szarvasi biomass using different reagents including weak acids and alkali. The produced pulp, hydrolysates, and extracted lignin were quantitatively characterized. In particular, the alkali pretreatment significantly enhanced the saccharification efficiency of the pulp 16-fold compared to untreated biomass of Szarvasi. The acid pretreatment directly converted 25% of the cellulose into glucose without the need of enzymatic digestion. In addition, based on lignin compositional and lignin linkage analysis a lignin chemical model structure present in Szarvasi biomass could be established.


2022 ◽  
Vol 6 (4) ◽  
pp. 300-310
Author(s):  
I. M. Chernukha ◽  
A. V. Meliashchenia ◽  
I. V. Kaltovich ◽  
E. R. Vasilevskaya ◽  
M. A. Aryzina ◽  
...  

The inability to reproduce certain digestive processes in vivo, high research costs and ethical aspects have led to the development of a large number of in vitro digestion models. These models allow us to take into account various factors of modeling complex multistage physiological processes occurring in the gastrointestinal tract, which makes them promising and widely used. A significant part of in vitro methods includes assessment by enzymatic digestion and are based on the calculation of nitrogen remaining after digestion in relation to the initial total nitrogen (according to the Dumas, Kjeldahl method, spectrophotometric or chromatographic method). There are also a number of titrometric methods (pH‑stat), which are mainly used to assess the digestibility of feed, most successfully for aquatic animals due to the simplicity of their digestive tract. Methods for assessing the digestibility of food products by enzymatic digestion have undergone various stages of evolution (since 1947) and have been widely modified by including various enzymes (pepsin, trypsin, pancreatin, erepsin, etc.) in model systems, indices for various products have been determined on their basis (pepsin-digest-residue (PDR) index, 1956; pepsin pancreatin digest (PPD) index, 1964; pepsin digest dialysate (PDD), 1989). As a result, a single protocol was formed to study the digestibility of food — INFOGEST (2014–2019), which includes three stages of digestion (oral, gastric and intestinal). It allows researchers to accurately reproduce the conditions of the human gastrointestinal tract and is widely used by scientists around the world.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
José P. S. Aniceto ◽  
Vítor H. Rodrigues ◽  
Inês Portugal ◽  
Carlos M. Silva

Tomato processing leads to the production of considerable amounts of residues, mainly in the form of tomato skins, seeds and vascular tissues, which still contain bioactive molecules of interest for food, pharmaceutical and nutraceutical industries. These include carotenoids, such as lycopene and β-carotene, tocopherols and sitosterols, among others. Supercritical fluid extraction is well positioned for the valorization of tomato residues prior to disposal, because it remains an environmentally safe extraction process, especially when using carbon dioxide as the solvent. In this article, we provide an extensive literature overview of the research on the supercritical fluid extraction of tomato residues. We start by identifying the most relevant extractables present in tomatoes (e.g., lycopene) and their main bioactivities. Then, the main aspects affecting the extraction performance are covered, starting with the differences between tomato matrixes (e.g., seeds, skins and pulp) and possible pretreatments to enhance extraction (e.g., milling, drying and enzymatic digestion). Finally, the effects of extraction conditions, such as pressure, temperature, cosolvent, flow rate and time, are discussed.


2021 ◽  
Author(s):  
Lynn Doran ◽  
Amanda P. De Souza

Enzymatic digestion of total soluble starch to glucose in plant tissue extracts for preparation for quantification via the GOD-POD Method (NZYtech).


2021 ◽  
Author(s):  
Lennard L. Bohlender ◽  
Juliana Parsons ◽  
Sebastian N.W. Hoernstein ◽  
Nina Bangert ◽  
Fernando Rodriguez-Jahnke ◽  
...  

As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g. on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.


Author(s):  
Alessandro Gennai ◽  
Alessandro Gennai ◽  
B Bovani ◽  
M Colli ◽  
F Melfa ◽  
...  

Background: Clinical studies demonstrated the efficacy of therapies based on the autologous grafting of adult mesenchymal stem cells to accelerate the healing and regenerative processes of the skin and mesenchymal tissues; therefore, it is considered a valuable approach in the aesthetic rejuvenation treatment to give volumization and skin regeneration effects. Objective: The aim of the project consisted of the control of cell viability of adipose tissue (AT) harvested using the two types of cannulas having 0.8 mm and 1 mm side port holes. The results were compared with tissue harvested with a standard liposuction technique and processed with a standard procedure consisting of enzymatic digestion (collagenase). Methods: This study was performed on adipose tissues harvested from 7 patients (6 females and 1 male) with an average age of 48.5 years with 3 different techniques. We compared the cell vitality of every sample at T0 and T72. Results: Lipoaspirate tissue-derived by 0.8- and 1 mm cannula from all samples proved to be vital and possess viable cells. The average absorbance was similar immediately after plating (T0) and 72 hours after (T72) for the two cannulas, 0.8- and 1 mm cannula. The two systems proved to equally harvest vital tissue. An increase in cell viability was observed in all samples for each condition (0.8-, 1 mm and enzymatic digestion). Conclusion: This study proved that guided harvested adipose tissue with small cannulas with small side port holes yields a comparable amount of viable cells compared to adipose tissue harvested with a liposuction system and processed with enzymatic digestion (collagenase). This study confirms that the minimally invasive technique and minimal manipulation of the adipose tissue could yield a tissue with a good amount of viable cells. This micro fragmented adipose tissue is a promising source for regenerative treatments.


2021 ◽  
Author(s):  
Jiaxin Lu ◽  
Yuwen Guo ◽  
Atif Muhmood ◽  
Bei Zeng ◽  
Yizhan Qiu ◽  
...  

Abstract Food waste is becoming more prevalent, and managing it is one of the most important issues in terms of food safety. In this study, functional proteins and bioactive peptides produced from the enzymatic digestion of Black soldier fly (Hermetia illucens L., BSF) fed with food wastes were characterized and quantified using proteomics-based analysis.The results revealed approximately 78 peptides and 57 proteins, including 40S ribosomal protein S4, 60S ribosomal protein L8, ATP synthase subunit alpha, ribosomal protein S3, Histone H2A, NADP- glutamate dehydrogenase, Fumarate hydratase, RNA helicase, Chitin binding Peritrophin-A, Lectin C-type protein, etc. were found in BSF. Furthermore, functional analysis of the proteins revealed that the 60S ribosomal protein L5 (RpL5) in BSF interacted with a variety of ribosomal proteins and played a key role in the glycolytic process (AT14039p). Higher antioxidant activity was found in peptide sequences such as GYGFGGGAGCLSMDTGAHLNR, VVPSANRAMVGIVAGGGRIDKPILK, AGLQFPVGR, GFKDQIQDVFK, and GFKDQIQDVFK. It was concluded that the bioconversion of food wastes by Hermetia illucens broght about the generation of variety of functional proteins and bioactive peptides with strong antioxidant activity. However, more studies are required for exploiting potential of Hermetia illucens in value addition of food wastes.


2021 ◽  
Author(s):  
Matylda Wacławska ◽  
Wojciech Dzwolak

Many of the potential applications of albumin-stabilized gold nanoclusters (AuNC) arise from the sensitivity of their luminescence to the presence of various ions and albumin-degrading proteases. However, the underlying photophysics and the mechanisms responsible for protease-induced quenching of AuNC luminescence are not fully understood. Here, we study proteinase K-induced digestion of bovine serum albumin (BSA)-AuNC conjugate under aerobic and anaerobic conditions. To this end, we adapt a Co(II)-catalyzed sulfite-based protocol enabling effective in situ deoxidization without deactivation of the enzyme. In the absence of proteinase K, the anaerobic conditions facilitate luminescence of BSA-AuNC reflected by a moderate increase in the red luminescence intensity. However, in the presence of proteinase K, we have observed a steeper decrease of emission intensity irrespective of whether the digestion was carried out under aerobic or anaerobic conditions. In both cases, the diminishing fluorescence occurred in phase with shifting of the emission maximum to longer wavelengths. These results contradict the previous hypothesis that protease-induced quenching of BSA-AuNC luminescence is a consequence of enhanced diffusion of oxygen to bare AuNC. Instead, aggregation of unprotected AuNCs and separation of nanoclusters from albumin’s side chains involved in energy transfers and luminescence-promoting electron donors may underlie the observed sensitivity of BSA-AuNC to protease treatment. Our findings are discussed in the context of mechanisms of formation and photophysics of BSA-AuNC conjugates.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiayue Guo ◽  
Alyssa Gutierrez ◽  
Libo Tan ◽  
Lingyan Kong

Ascorbic acid, also known as vitamin C, was previously reported to inhibit the activity of pancreatic α-amylase, the primary digestive enzyme for starch. A major implication of such inhibition is a slowed rate of starch digestion into glucose, which thereby reduces postprandial hyperglycemia. The aim of this study was to explore the inhibitory effects of ascorbic acid at various concentrations on the in vitro digestion of high amylose maize starch (HAMS) and potato starch (PS) in both raw and cooked conditions. Resistant starch (RS) content, defined as the starch that remained after 4 h of simulated in vitro enzymatic digestion, was measured for the starch samples. Upon the addition of ascorbic acid, the RS contents increased in both raw and cooked starches. Cooking significantly reduced the RS contents as compared to raw starches, and less increase in RS was observed with the addition of ascorbic acid. The inhibitory effect of ascorbic acid on the digestion of raw starches showed a dose-dependent trend until it reached the maximum extent of inhibition. At the concentrations of 12.5 and 18.75 mg/mL, ascorbic acid exhibited the most potent inhibitory effect on the in vitro starch digestion in raw and cooked conditions, respectively. Overall, our results strongly indicate that ascorbic acid may function as a glycemic modulatory agent beyond other important functions, and its effects persist upon cooking with certain concentrations applied.


Sign in / Sign up

Export Citation Format

Share Document