proliferative zone
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Miguel Turrero García ◽  
Sarah K Stegmann ◽  
Tiara E Lacey ◽  
Christopher M Reid ◽  
Sinisa Hrvatin ◽  
...  

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single cell RNA sequencing, histology and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


2021 ◽  
Vol 10 (14) ◽  
pp. e518101422159
Author(s):  
Deise Ponzoni ◽  
Elissa Kerli Fernandes ◽  
Mateus Muller da Silva ◽  
Izabel Cristina Custódio de Souza ◽  
John Kim Neubert ◽  
...  

Bisphosphonates (BIS) are indicated for several clinical disorders (e.g., osteoporosis). However, BIS has been associated with osteonecrosis and alterations in osteoclastogenesis and skeletal development. This study aimed to evaluate the effects of BIS (zoledronic acid - ZA and alendronate sodium - AS) on zones of the growth plate of rat femur. Animals (Wistar rats, n = 19) were divided into groups: 1) AS Group: animals received alendronate sodium orally (3 mg/kg per day); 2) ZA Group: ZA was administered intraperitoneally (0.2 mg/kg per week); and 3) Control Group (CG): a vehicle was administered. Animals were euthanized 21 days after the treatment, and femurs were collected for histological analysis. The images of all zones (resting, proliferative, hypertrophic, and calcified) were processed by the Qcapture® software providing a 40 and 400-fold increase.  ZA decreased epiphyseal growth plate cell zones (ZA Group vs. CG) in most cases. Likewise, AS diminished the proliferative zone (AS Group vs. CG). Furthermore, ZA increased the calcified zone (ZA Group vs. CG). Previous works demonstrated that BIS decrease the epiphyseal disc. This reduction is probably due to the shortening of the cellular zones that undergoes calcification/ossification. The present results suggest that BIS should be carefully indicated because these drugs might accelerate epiphyseal closure.


2021 ◽  
Author(s):  
Xin Li ◽  
Noor Singh ◽  
Camille Miller ◽  
India Washington ◽  
Bintou Sosseh ◽  
...  

The C. elegans adult hermaphrodite germ line is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis and ovulation. Recently, we discovered that the distal-most Sh1 sheath cells associate with mitotic germ cells as they exit the niche. Here we report that these distal sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.


2021 ◽  
Author(s):  
Ayaka Kinoshita ◽  
Makiko Naito ◽  
Hirokazu Tsukaya

Leaf meristem is a cell proliferative zone present in the lateral organ primordia, and it contributes to the expansion of lateral organ lamina. In this study, we investigated how the proliferative zone affects the final morphology of the lateral organs. We examined how cell proliferative zones differ in the primordia of polar-auxin transport inhibitor (PATI)-treated leaves and floral organs from normal foliage leaf primordia of Arabidopsis thaliana with focus on the spatial accumulation pattern of mRNA and protein of ANGUSTIFOLIA3 (AN3), a key element for leaf meristem positioning. As a result, we revealed that organ shape change by PATI treatment could not be attributed to changes in leaf-meristem positioning, size of the leaf meristem, or the expression pattern of AN3. Instead, it was attributed to altered cell division angles in the leaf meristem. In contrast, different shapes between sepals and petals compared with foliage leaves were observed to be correlated with both altered meristem position associated with altered AN3 expression patterns and different distributions of cell division angles. These results strongly indicate that lateral organ shapes are regulated via two aspects: position of meristem and cell division angles; the former is mainly governed by the AN3 expression pattern.


2021 ◽  
Author(s):  
Corey C Harwell ◽  
Miguel Turrero García ◽  
Sarah K Stegmann ◽  
Tiara Lacey ◽  
Christopher M Reid ◽  
...  

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single cell RNA sequencing, histology and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, a spatially distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


2021 ◽  
Author(s):  
Mauricio Rocha-Martins ◽  
Jenny Kretzschmar ◽  
Elisa Nerli ◽  
Martin Weigert ◽  
Jaroslav Icha ◽  
...  

AbstractWhile the design of industrial products is often optimized for the sequential assembly of single components, organismal development is hallmarked by the concomitant occurrence of tissue growth and organization. Often this means that proliferating and differentiating cells occur at the same time in a shared tissue environment that continuously changes. How cells adapt to architectural changes in order to prevent spatial interference remains unclear. To understand how cell movements important for growth and organization are orchestrated, we here study the emergence of photoreceptor neurons that occur during the peak of retinal growth using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on active bidirectional photoreceptor translocation. This leads to a transient transfer of the entire cell population away from the apical proliferative zone. This migration pattern is driven by distinct cytoskeletal machineries, depending on direction: microtubules are required for basal translocation, while actomyosin drives apical movement. Blocking photoreceptor translocation leads to apical overcrowding that hampers progenitor movements. Thus, photoreceptor migration is crucial to prevent competition for space and thereby allows concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning, is involved in coordinating morphogenesis.


2021 ◽  
Vol 15 (1) ◽  
pp. e0008935
Author(s):  
Germain Chevignon ◽  
Vincent Foray ◽  
Mercedes Maria Pérez-Jiménez ◽  
Silvia Libro ◽  
Matthew Chung ◽  
...  

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.


Bone Research ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Lei ◽  
Xuekun Fu ◽  
Pengyu Li ◽  
Sixiong Lin ◽  
Qinnan Yan ◽  
...  

Abstract The LIM domain-containing proteins Pinch1/2 regulate integrin activation and cell–extracellular matrix interaction and adhesion. Here, we report that deleting Pinch1 in limb mesenchymal stem cells (MSCs) and Pinch2 globally (double knockout; dKO) in mice causes severe chondrodysplasia, while single mutant mice do not display marked defects. Pinch deletion decreases chondrocyte proliferation, accelerates cell differentiation and disrupts column formation. Pinch loss drastically reduces Smad2/3 protein expression in proliferative zone (PZ) chondrocytes and increases Runx2 and Col10a1 expression in both PZ and hypertrophic zone (HZ) chondrocytes. Pinch loss increases sclerostin and Rankl expression in HZ chondrocytes, reduces bone formation, and increases bone resorption, leading to low bone mass. In vitro studies revealed that Pinch1 and Smad2/3 colocalize in the nuclei of chondrocytes. Through its C-terminal region, Pinch1 interacts with Smad2/3 proteins. Pinch loss increases Smad2/3 ubiquitination and degradation in primary bone marrow stromal cells (BMSCs). Pinch loss reduces TGF-β-induced Smad2/3 phosphorylation and nuclear localization in primary BMSCs. Interestingly, compared to those from single mutant mice, BMSCs from dKO mice express dramatically lower protein levels of β-catenin and Yap1/Taz and display reduced osteogenic but increased adipogenic differentiation capacity. Finally, ablating Pinch1 in chondrocytes and Pinch2 globally causes severe osteopenia with subtle limb shortening. Collectively, our findings demonstrate critical roles for Pinch1/2 and a functional redundancy of both factors in the control of chondrogenesis and bone mass through distinct mechanisms.


2020 ◽  
Vol 6 (36) ◽  
pp. eaba1693 ◽  
Author(s):  
Nariko Arimura ◽  
Mako Okada ◽  
Shinichiro Taya ◽  
Ken-ichi Dewa ◽  
Akiko Tsuzuki ◽  
...  

For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2–Rap1–N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP–based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin. Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.


Cartilage ◽  
2020 ◽  
pp. 194760352094122
Author(s):  
Jakub Jaroszewicz ◽  
Piotr Bazarnik ◽  
Anna Osiecka-Iwan ◽  
Anna Hyc ◽  
Emilia Choinska ◽  
...  

Objective Initial stages of cartilage matrix calcification depend on the activity of matrix vesicles. The purpose of the study was to describe how calcified matrix vesicles join into larger structures, to present their up-to-date undescribed 3-dimensional image, and to observe how calcified matrix relates to chondrocyte lacunae. Design Calcified cartilage was obtained from the zone of provisional calcification of calf costochondral junctions, then enzymatically isolated and studied by microtomography, scanning electron microscopy, atomic force microscopy and X-ray diffraction, and Fourier transform infrared spectroscopy. Results Hyaluronidase digestion released packets of granules surrounded by the cartilage matrix. Further digestion, with collagenase and trypsin, removed matrix and exposed granules with dimensions within 50 to 150 nm range, which we consider as equivalent of calcified matrix vesicles. Granules joined into larger groups with dimensions of 0.5 to 2 μm, which we call globular units. Certain matrix vesicles appeared well connected but contained globular units that had spaces filled with electron lucent material, presumably matrix or chondrocyte remnants. Globular units were organized into massive structures taking the shape of oval plates. Comparison of these plates with lacunae containing isogenous groups of chondrocytes from proliferative zone of costochondral junction suggests that the cells from a single lacuna were responsible for the formation of one plate. The plates were connected with each other and extended over provisional calcification zone. Conclusions The outcome showed how particular calcified matrix vesicles associate into globular units, which organize into massive structures assuming the shape of oval plates and eventually cover large areas of cartilage matrix.


Sign in / Sign up

Export Citation Format

Share Document