Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)

2001 ◽  
Vol 65 (16) ◽  
pp. 2789-2806 ◽  
Author(s):  
Jean-Pierre Lorand ◽  
Olivier Alard
2008 ◽  
Vol 248 (3-4) ◽  
pp. 195-212 ◽  
Author(s):  
V.G. Batanova ◽  
G.E. Brügmann ◽  
B.A. Bazylev ◽  
A.V. Sobolev ◽  
V.S. Kamenetsky ◽  
...  

2021 ◽  
Vol 59 (6) ◽  
pp. 1305-1338
Author(s):  
Stephen A. Prevec ◽  
Savvas Anthony Largatzis ◽  
William Brownscombe ◽  
Tobias Salge

ABSTRACT The wide-reef facies of the Merensky Reef in the eastern part of the western lobe of the Bushveld Complex was sampled in order to better resolve otherwise spatially constrained variation in highly siderophile elements across this geological unit. The platinum group element mineralogy and whole-rock highly siderophile element concentrations were measured across two vertical sections in close proximity. In one section, the Merensky Reef unit was bound by top and bottom platinum group elements-enriched horizons (reefs) with a well-developed pegmatoidal phase in the top third of the intrareef pyroxenite, but with neither a top nor a bottom chromitite present. The other drill core section featured a thin (<1 cm thick) chromitite layer associated with the highest platinum group element concentrations of any rock in this study as the bottom reef, but with a chromitite-absent top reef, and very poor development of the pegmatoid. Primitive mantle-normalized profiles of the main lithological units show relatively flat, primitive mantle-like highly siderophile element abundances (Cr, V, Co, Ni, platinum group elements, Au and Cu) in the Merensky pyroxenite, with modest depletion in Ir-affiliated platinum group elements. The platinum group element-rich top and bottom reefs, and the pegmatoidal upper pyroxenites, display characteristic enrichment in the Pt-affiliated platinum group elements and undepleted Ir-affiliated platinum group elements. The leuconoritic hanging wall and footwall rocks show comparable highly siderophile element profiles, distinguished from one another by relative depletion in the Pt-affiliated platinum group elements of the footwall samples. The vertical variation in highly siderophile element abundances through both sections is characterized by low platinum group element abundances through the lower reef pyroxenite, with platinum group element, Au, and Cu ± Ni concentrations increasing through the upper pegmatoidal pyroxenite, and main enrichment peaks at the top and bottom reefs. Significant localized (centimeter-scale) zones of chalcophile metal depletion are present immediately above the top reef and below the bottom reef. In addition, a wider zone of Pt-affiliated platinum group elements (with Pd more depleted than Pt)-depletion was identified within the pegmatoidal pyroxenite around one meter below the top reef. The platinum group element mineralogy of the bottom reef consists mainly of platinum group element sulfides, with minor arsenides and antimonides. In contrast, the platinum group element mineralogy of the top reef, and the small amount of data from the intrareef pyroxenite, mainly consist of Pt-affiliated platinum group elements-Bi-tellurides. The Pt-sulfides are mainly equant, relatively coarse crystals (many grains between 50 to 100 μm2 area), contrasting with the Pt-affiliated platinum group elements-Sb-As and -Bi-Te minerals that tend be high aspect-ratio grains, occurring in veinlets or as rims on earlier-forming platinum group element phases. These Te-As-Bi-Sb compounds are closely associated with chlorite, actinolite, quartz, and chalcopyrite, consistent with secondary deposition at lower temperatures and association with aqueous fluids. A model is proposed involving the emplacement of the Merensky unit as a magma pulse into at least semi-crystallized host rock, followed by aqueous fluid saturation and local migration, combined with concentration of late magmatic fluids around the top and bottom contacts of the magma pulse. Late remobilization of Pt-affiliated platinum group elements from the zones immediately (centimeter-scale) above the top reef, and from the underlying meter or two of pyroxenite, and from the centimeters underlying the bottom reef, have added additional platinum group elements to the reefs as late platinum group elements-Te-As-Bi-Sb minerals, independent of whether or not chromite is present in the reef initially.


2004 ◽  
Vol 52 (4) ◽  
pp. 331-340 ◽  
Author(s):  
Q.L. Hou ◽  
E.M. Kolesnikov ◽  
L.W. Xie ◽  
N.V. Kolesnikova ◽  
M.F. Zhou ◽  
...  

2020 ◽  
Vol 115 (6) ◽  
pp. 1321-1342
Author(s):  
Ivan F. Chayka ◽  
Vadim S. Kamenetsky ◽  
Liudmila M. Zhitova ◽  
Andrey E. Izokh ◽  
Nadezhda D. Tolstykh ◽  
...  

Abstract The Norilsk 1 intrusion (Russia), renowned for its abundance of sulfide ores, contains an upper contact zone, which hosts sulfide-poor and Cr spinel and platinum group element (PGE)-rich discontinuous reefs with significant economic potential. Located within strongly inhomogeneous contact rocks of various compositions, the origin of these reefs is complex and debated. Enrichment in PGEs in these rocks is distributed heterogeneously, occasionally occurring in extremely dense disseminations of Cr spinel, which are unusual for other rocks of the Norilsk 1 intrusion. The compositions of Cr spinel vary significantly between individual samples, even within the same samples across clusters of several Cr spinel grains and single grains. Chromium spinel grains are broadly characterized by low Mg# (3–50 mol %), moderate to extremely high TiO2 content (1–18 wt %), diverse Fe2+/Fe3+ ratios, and elevated V and Zn. Multiphase silicate inclusions hosted by Cr spinel are dominated by orthopyroxene, alkali-feldspar, clinopyroxene, Na phlogopite, high-Al amphibole, chlorite, and albite, along with minor felsic glass, sulfide, apatite, baddeleyite, titanite, calcite, halite, and cordierite. Heating experiments (1,250°C) on the silicate inclusions failed to produce homogeneous glasses but showed evidence of partial melting and reactions with precursor minerals that crystallized new phases. The experimentally obtained glasses are characterized by compositions that strongly differ from any known igneous rock in the Norilsk region, and the assemblage of phases in these inclusions is not supportive of the entrapment of a homogeneous silicate melt. Trace element patterns of the glasses of the experimentally heated inclusions are compositionally distinct from the Norilsk trap basalts, and instead are closer to the sedimentary rocks of the Norilsk region. We suggest that an in situ interaction between the mafic melt and the sedimentary rocks was responsible for Cr spinel mineralization and the formation of the host rocks. The subsequent subsolidus modification of the initial rocks expanded the Cr spinel compositional range and formed muscovite-albite-chlorite assemblages, which replaced the original silicate minerals.


Sign in / Sign up

Export Citation Format

Share Document