silicate inclusions
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1258
Author(s):  
Stephano P. T. Piva ◽  
Petrus Christiaan Pistorius

In some applications, deep desulfurization and deoxidation of steels without the use of aluminum are required, using Si as a deoxidant instead, with double-saturated slags in the CaO-SiO2-CaF2-MgO system. This work studied the desulfurization and nonmetallic inclusion evolution for the system using an induction furnace and compared the results with FactSage kinetic simulations. Steel samples were taken from the steel melt and analyzed with ICP-MS and combustion analysis for chemistry, and SEM/EDS for nonmetallic inclusion quantity, size, and composition. The results indicate that the steel was deeply desulfurized, with a final sulfur partition coefficient of 580; MgO was reduced from the slag, yielding dissolved [Mg] that transformed liquid Mn–silicate inclusions into forsterite and MgO. Intentional reoxidation of the melt with oxidized electrolytic iron demonstrated a significant concentration of dissolved [Mg] in the steel, by the formation of additional forsterite and MgO upon reoxidation.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 744
Author(s):  
Elena Mercedes Pérez-Monserrat ◽  
Lara Maritan ◽  
Enrico Garbin ◽  
Giuseppe Cultrone

Representative and very uneven texturally bricks having yellow/beige or pale or dark red colors from the Renaissance walls (16th century) of Padua, Northeast Italy, were studied by means of colorimetric, petrographic (MOP), chemical (XRF), mineralogical (PXRD) and microstructural analysis (FESEM-EDS). Starting from the color measurements of the ceramic bodies, the manufacturing technologies and their influence on the physical behavior and durability of the bricks were established. The porous system was characterized by means of hygric tests and mercury intrusion porosimetry; the compactness and structural anisotropy were defined through ultrasound velocity; the uniaxial compressive strength was determined; and durability to salt crystallization and frost action of the bricks was assessed. Mg- and Ca-rich illitic clays fired at temperatures ≥900 °C were used to manufacture the beige hue bodies, while the pale red bricks were made out with Ca- and Fe-rich illitic clays fired at 850–900 °C. A lower carbonate content on the base clays and a lower firing temperature were the main causes responsible for the changing colors from beige to red hue. The increase of the red color was associated to higher silicate inclusions content and lower development of reaction rims around grains. The low sintering degree achieved yielded highly porous bodies with diverse porous systems, leading to differential physical performance and durability of the bricks that may turn out beneficial for the conservation of the historic walls.


Author(s):  
Shaolin Li ◽  
Weibiao Hsu (徐伟彪) ◽  
Alexander Nemchin ◽  
Xiaochao Che ◽  
Dunyi Liu ◽  
...  
Keyword(s):  

Lithos ◽  
2021 ◽  
pp. 106218
Author(s):  
Guolin Guo ◽  
Wendy L. Mao ◽  
Ru Y. Zhang ◽  
Juhn G. Liou ◽  
W.G. Ernst ◽  
...  

Author(s):  
Caroline E. Caplan ◽  
Gary R. Huss ◽  
Hope A. Ishii ◽  
John P. Bradley ◽  
Birger Schmitz ◽  
...  
Keyword(s):  

2021 ◽  
Vol 64 (2) ◽  
pp. 135-142
Author(s):  
A. S. Simachev ◽  
T. N. Oskolkova ◽  
A. A. Umanskii ◽  
A. V. Golovatenko

Metallographic and X-ray studies of continuously cast billets of E90KhAF rail steel have been carried out. We have established the regularities of non-metallic inclusions distribution over the crystallization zones before and after billets deformation. It was revealed that in crustal zone the main non-metallic inclusions are point oxides, aluminum nitrides, iron silicates (FeO·SiO2) and alumosilicates (Al2O3·SiO2). They were identified in the zone of columnar crystals. In central zone of the billet, manganese sulfides (MnS), manganese silicates (MnO·SiO2), alumosilicates (Al2O3·SiO2), iron silicates (FeO·SiO2), and point oxides were found. It has been determined that concentration and size of nonmetallic inclusions tend to increase from the surface to central zone of continuously cast billets, which is consistent with generally accepted ideas about mechanisms of billet formation during crystallization. The mechanism of deformation of two-phase silicate non-metallic inclusions and their influence on quality of rail products was disclosed. It is shown that inhomogeneous deformability of complex silicate inclusions aggravates their harmful effect on rail products quality. In this case, additional stresses appear in addition to inclusion-matrix deformation and contact stresses existing at interphase boundaries. This pattern also holds for non-deformed silicate inclusions. Such a distribution of inclusions in the billets volume somewhat reduces their negative effect on rails quality, since near-contact layers of the billet undergo more intense deformation during rolling, and as the axial zone of a billet is approached, deformation rate decreases.


2021 ◽  
Author(s):  
Sobhi Nasir

<p>The Masirah ophiolite is one of the few true ocean ridge ophiolites that have been preserved (Rollinson, 2017) and lacks any indication that it formed in a subduction environment. The Masirah ophiolite in south-eastern Oman is a different and older ophiolite from the more famous northern Oman ophiolite. Chromite and copper ores comprise large deposits in the Samail ophiolite, northern Oman. In comparison, chromite and copper deposits have not been described in previous reports or previous exploration in Masirah ophiolite. Rollinson (2017) has proposed that the apparent absence of chromitites in the mantle section of Masirah ophiolite is an important discriminant between subduction related and ocean ridge ophiolites.  However, during recent studies on the Batain ophiolite mélange, and Masirah ophiolite, several chromitite pods have been discovered. The chromitites occur as separated small concordant, lenticular pods (3–10 m in thickness), which have been extensively altered and deformed, with the host pyroxenite serpentinites serpentinized harzburgites and dunites. The largest chromitite pods found within the pyroxenite and dunite of Masirah are up to 10 m across.  Unusual minerals and mineral inclusions (orthopyroxene, clinopyroxene, amphibole, phlogopite, serpentine, native Fe, FeO, alloy, sulfide, calcite, laurite, celestine and halite) within chromite have been observed in the chromitites from the  Masirah ophiolites.  The existence of hydrous silicate inclusions in the chromite calls for a role of hydration during chromite genesis. Both  phlogopite and hornblende were possibly formed from alkali-rich hydrous fluids/melts trapped within the chromite during the chromitite formation. High-T green hornblende and phlogopite included in the chromites is evidence of the introduction of water in the magma at the end of the chromite crystallization. Such paragenesis points to the presence of hydrous fluids during the activity of the shear bands. The chromitites parental magmas are rich in K, Na, LREE, B, Cs, Pb, Sr, Li, Rb and U relative to HREE, reflecting the alkalic fluids/melts that prevailed during the chromitites genesis.</p><p>The mineral inclusions  in association with host peridotites may have been brought by the uprising asthenosphere at mid-oceanic ridges due to the mantle convection. It appears that this chromite has been formed through reaction between amid-ocean-ridge basalt-melt with depleted harzburgite in the uppermost mantle.  The chromitite deposits have similar cr# (55-62% Al-chromitites), mg# Al2O3 and TiO2 contents to spinels found in MORB, and have been interpreted as having formed in amid-ocean ridge setting.  This suggests that this chromitites is residual from lower degree, partial melting of peridotite, which produced low-Cr# chromitites at the Moho transition zone, possibly in a mid-ocean-ridge setting. The chemistry of both mineral inclusions and chromite   suggests MORB-related tectonic setting for the chromitites that were crystallized at 1000 °C–1300 °C under pressures <3 GPa . The host peridotites were generated during the proto-Indian Ocean MORB extension and emplaced as a result of the obduction of the ophiolite over the Oman Continental margin during Late Cretaceous-Early Paleocene.</p><p>Rollinson, H., 2017. Geoscience Frontiers, 8: 1253–1262.</p>


2021 ◽  
Vol 496 (2) ◽  
pp. 142-145
Author(s):  
D. S. Mikhailenko ◽  
A. V. Korsakov ◽  
Hiroaki Ohfuji ◽  
N. V. Sobolev

2021 ◽  
Vol 871 ◽  
pp. 14-19
Author(s):  
Wei Xu ◽  
Jian Cai ◽  
Lian Wen Xu ◽  
Hai Yang ◽  
Quan Lei Chen

The vehicle axle is the main bearing part of the vehicle transmission, which needs to carry large power and torque. The axle is processed with high-strength steel. In order to verify the material properties of the axle and confirm whether it meets the design requirements, the chemical composition, mechanical properties, microstructure and metal inclusions of the axle are analyzed. The results show that the chemical composition of the material used in the axle meets the standard requirements, the parts with high hardness and tensile strength are tempered martensite, and the metal inclusions are mainly alumina inclusions, silicate inclusions and tin inclusions. Through the analysis of the performance of the axle, it is concluded that the axle material can meet the design requirements.


2020 ◽  
Vol 115 (6) ◽  
pp. 1321-1342
Author(s):  
Ivan F. Chayka ◽  
Vadim S. Kamenetsky ◽  
Liudmila M. Zhitova ◽  
Andrey E. Izokh ◽  
Nadezhda D. Tolstykh ◽  
...  

Abstract The Norilsk 1 intrusion (Russia), renowned for its abundance of sulfide ores, contains an upper contact zone, which hosts sulfide-poor and Cr spinel and platinum group element (PGE)-rich discontinuous reefs with significant economic potential. Located within strongly inhomogeneous contact rocks of various compositions, the origin of these reefs is complex and debated. Enrichment in PGEs in these rocks is distributed heterogeneously, occasionally occurring in extremely dense disseminations of Cr spinel, which are unusual for other rocks of the Norilsk 1 intrusion. The compositions of Cr spinel vary significantly between individual samples, even within the same samples across clusters of several Cr spinel grains and single grains. Chromium spinel grains are broadly characterized by low Mg# (3–50 mol %), moderate to extremely high TiO2 content (1–18 wt %), diverse Fe2+/Fe3+ ratios, and elevated V and Zn. Multiphase silicate inclusions hosted by Cr spinel are dominated by orthopyroxene, alkali-feldspar, clinopyroxene, Na phlogopite, high-Al amphibole, chlorite, and albite, along with minor felsic glass, sulfide, apatite, baddeleyite, titanite, calcite, halite, and cordierite. Heating experiments (1,250°C) on the silicate inclusions failed to produce homogeneous glasses but showed evidence of partial melting and reactions with precursor minerals that crystallized new phases. The experimentally obtained glasses are characterized by compositions that strongly differ from any known igneous rock in the Norilsk region, and the assemblage of phases in these inclusions is not supportive of the entrapment of a homogeneous silicate melt. Trace element patterns of the glasses of the experimentally heated inclusions are compositionally distinct from the Norilsk trap basalts, and instead are closer to the sedimentary rocks of the Norilsk region. We suggest that an in situ interaction between the mafic melt and the sedimentary rocks was responsible for Cr spinel mineralization and the formation of the host rocks. The subsequent subsolidus modification of the initial rocks expanded the Cr spinel compositional range and formed muscovite-albite-chlorite assemblages, which replaced the original silicate minerals.


Sign in / Sign up

Export Citation Format

Share Document