element concentrations
Recently Published Documents


TOTAL DOCUMENTS

1249
(FIVE YEARS 215)

H-INDEX

61
(FIVE YEARS 7)

Author(s):  
Tugce Yalcin Gorgulu ◽  
Deniz Uygunoz ◽  
Azmi Seyhun Kipcak ◽  
Emek Moroydor Derun

Pollutants ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-11
Author(s):  
Antonio Speranza ◽  
Rosa Caggiano ◽  
Vito Summa

The proposed approach based on compositional data analysis was applied on simultaneous measurements of the mineral element concentrations of PM10 and PM2.5 from a typical suburban site with and without a Saharan event. The suburban site is located in the city of Rome. The selected mineral elements were Al, Si, Ca, Fe, Ti, Mg, and Sr. The data relating to these elements are reported in a previous study. The considered elements are mainly related to mineral matter. The proposed approach allows statistically validating that the mineral element concentrations of PM during days with a Saharan event differ from those without a Saharan event in terms of mineral element composition and size distribution. In particular, the results showed that the compositional data analysis applied to simultaneous measurements of mineral element concentrations of PM10 and PM2.5 is a helpful technique that can be used to study environmental sites affected by natural sources such as Saharan events. Moreover, the presented technique can be handy in all those conditions where it is important to discriminate whether the occurrence of an exceedance or a violation of the daily limit value established for PM could also be due to natural sources.


OENO One ◽  
2022 ◽  
Vol 56 (1) ◽  
pp. 29-40
Author(s):  
Robin Cellier ◽  
Sylvain Berail ◽  
Ekaterina Epova ◽  
Julien Barre ◽  
Fanny Claverie ◽  
...  

Thirty-nine Champagnes from six different brands originating from the AOC Champagne area were analyzed for major and trace element concentrations in the context of their production processes and in relation to their geographical origins. Inorganic analyses were performed on the must (i.e., grape juice) originating from different AOC areas and the final Champagne. The observed elemental concentrations displayed a very narrow range of variability. Typical concentrations observed in Champagne are expressed in mg/L for elements such as K, Ca, Mg, Na, B, Fe, A, and Mn. They are expressed in µg/L for trace elements such as Sr, Rb, Ba, Cu, Ni, Pb Cr and Li in decreasing order of concentrations. This overall homogeneity was observed for Sr and Rb in particular, which showed a very narrow range of concentrations (150 < Rb < 300 µg/L and 150 < Sr < 350 µg/L) in Champagne. The musts contained similar levels of concentration but showed slightly higher variability since they are directly influenced by the bedrock, which is quite homogenous in the AOC area being studied. Besides the homogeneity of the bedrock, the overall stability of the concentrations recorded in the samples can also be directly linked to the successive blending steps, both at the must level and prior to the final bottling. A detailed analysis of the main additives, sugar, yeast and bentonite, during the Champagne production process, did not show a major impact on the elemental signature of Champagne.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Noël-Aimée Kouamo Keutchafo ◽  
Nicole Armelle Wambo Simeni ◽  
Brillant Kandzi Nforba ◽  
Agathe Arrissa Noucoucouk ◽  
Josiane Demlabin Sonmo ◽  
...  

In the western Cameroon, crop out several dyke swarms of Paleozoic–Mesozoic age. These dykes intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon Volcanic Line. In the Njimom area, two groups of mafic dykes that crosscut the Neoproterozoic basement rocks have been observed. A first group intrudes the mylonites whereas the second group intrudes the granites. The dykes are alkaline basalts and hawaiites. The mineralogical assemblage of both groups of dykes consists of plagioclase, clinopyroxene, altered olivine, and opaque oxides. The dykes that cross-cut the Precambrian mylonitic gneisses show moderate TiO2 (1.7–2.0 wt.%), low MgO (4.4–7.1 wt.%), and compatible trace element concentrations (e.g., Cr = 70–180 ppm; Ni = 30–110 ppm). The dykes that intrude the granites have TiO2 contents between 2.3 and 2.5 wt.% and moderate compatible trace element concentrations (e.g., Cr = 260–280 ppm; Ni = 170–230 ppm). MgO varies from 5.9 to 9.2 wt.%. All mafic dykes are enriched in light lanthanide element and show moderate Zr/Nb and high Zr/Y, Nb/Yb, and Ti/V ratios similar to those of average ocean island basalt (OIB)-type magmas. Some dykes that intrude the mylonites show evidence of contamination by continental crust. The composition of the clinopyroxenes of the dykes that intrude the mylonites clearly indicate different and unrelated parental magmas from dykes that intrude the granites. Contents and fractionation of the least and the most incompatible elements suggest low degrees of partial melting (3–5%) of heterogeneous source slightly enriched in incompatible elements in the spinel stability field. The geochemical features of Njimom dykes (in particular the dykes that intrude the granites) are similar to those of Paleozoic and Mesozoic dykes recorded in the southern continental part of the Cameroon Volcanic Line, suggesting multiple reactivations of pre-existing fractures that resulted in the fragmentation of western Gondwana and the opening of the South Atlantic Ocean.


2021 ◽  
Vol 9 ◽  
Author(s):  
Barbara E. Wortham ◽  
Isabel P. Montañez ◽  
Kimberly Bowman ◽  
Daphne Kuta ◽  
Nora Soto Contreras ◽  
...  

In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+ and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1396
Author(s):  
Yu Tian ◽  
Guilin Han ◽  
Jie Zeng ◽  
Qian Zhang ◽  
Lifang Xu ◽  
...  

The chemical composition of biominerals is essential for understanding biomineral formation and is regarded as an attractive subject in bio-mineralogical research on human kidney stones (urinary calculi). In order to obtain more geochemically interpreted data on biogenic minerals, mineralogical compositions and major and trace element concentrations of sixty-six kidney stone samples derived from kidney stone removal surgeries were measured. Infrared spectroscopy results showed that calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) were the two main mineral components of kidney stones. Geochemical results indicated that major and trace element concentrations were present in the following order: Ca > Mg > Na > K > Zn > Fe > Pb > Ba > Cu > Ti > Mo > Cd > Cr. With the exception of Ca, Mg was the second-most abundant element. Zn exhibited higher concentrations relative to other trace elements, which suggests a potential substitution of calcium by metal ions with a similar charge and radius rather than by metals in kidney stone formation. Pb appeared in significantly higher concentrations than in previous studies, which indicates Pb enrichment in the environment. In order to discern multi-element relationships within kidney stones, principal component analysis was applied. Three principal components (PCs, eigenvalues >1) were extracted to explain 64.4% of the total variance. The first component exhibited positively correlated Na-Zn-Cr-Mo-Cd-Pb, while the second component exhibited more positively weighted Mg-K-Ba-Ti. Fe-Cu demonstrated a positive correlation in the third component. This study suggests that Ca exhibits a preference for uptake by oxalates during human urinary stone crystallization, while other alkali metals and alkaline earth metals precipitate with phosphate.


Sign in / Sign up

Export Citation Format

Share Document