Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells

2003 ◽  
Vol 46 (5) ◽  
pp. 809-821 ◽  
Author(s):  
Jinliang Yuan ◽  
Masoud Rokni ◽  
Bengt Sundén
2015 ◽  
Vol 279 ◽  
pp. 54-59 ◽  
Author(s):  
Jiwoong Bae ◽  
Dohaeng Lee ◽  
Soonwook Hong ◽  
Hwichul Yang ◽  
Young-Beom Kim

Author(s):  
William J. Sembler ◽  
Sunil Kumar

A typical single-cell fuel cell is capable of producing less than 1 V of direct current. Therefore, to produce the voltages required in most industrial applications, many individual fuel cells must typically be stacked together and connected electrically in series. Computational fluid dynamics (CFD) can be helpful to predict fuel-cell performance before a cell is actually built and tested. However, to perform a CFD simulation using a three-dimensional model of an entire fuel-cell stack can require a considerable amount of time and multiprocessor computing capability that may not be available to the designer. To eliminate the need to model an entire multicell assembly, a study was conducted to determine the incremental effect on fuel-cell performance of adding individual solid-oxide fuel cells (SOFCs) to a CFD model of a multicell stack. As part of this process, a series of simulations was conducted to establish a CFD-nodal density that would not only produce reasonably accurate results but could also be used to create and analyze the relatively large models of the multicell stacks. Full three-dimensional CFD models were then created of a single-cell SOFC and of SOFC stacks containing two, three, four, five, and six cells. Values of the voltages produced when operating with various current densities, together with temperature distributions, were generated for each of these CFD models. By comparing the results from each of the simulations, adjustment factors were developed to permit single-cell CFD results to be modified to estimate the performance of stacks containing multiple fuel cells. The use of these factors could enable fuel-cell designers to predict multicell stack performance using a CFD model of only a single cell.


2001 ◽  
Author(s):  
S. B. Beale ◽  
W. Dong ◽  
S. V. Zhubrin ◽  
R. J. Boersma

Abstract This paper presents the results of a collaborative research project of computer modeling of transport phenomena within the passages of solid-oxide fuel cells. From a mechanical design viewpoint, fuel cells may be considered to be similar to heat exchangers with internal heat generation due to ohmic heating. This is a function of load-driven factors. The thermomechanical design of the units is of paramount importance, as the reaction rates are a function of temperature, pressure, and species concentrations, i.e., the process is fully coupled. The design goal of the project is to ensure uniform flow and temperature distribution throughout the stack, to optimize performance and minimize the risk of failure. We developed computer models to predict the performance of cells and stacks of cells, so as to minimize the development of expensive experimental protypes and test rigs. The standard techniques of heat transfer and computational fluid dynamics were substantially modified to be applicable in this context. Three distinct approaches were considered. In all cases two fluids; air and fuel, each containing different chemical species were considered. The equations for fluid flow, heat and mass transfer with electro-chemical reactions occurring were discretized and solved using a finite-volume method. Detailed numerical simulations of a single cell and stacks of up to 54 cells were performed using fine three-dimensional meshes of up to 4.6 million cells. Simplified models based on a distributed resistance (porous media) analogy, and also traditional presumed flow methods used in heat exchanger and furnace design, were also employed. These latter approaches have the advantage of being readily executable on small personal computers. The three methodologies are described and compared in detail.


Author(s):  
Pietro Asinari ◽  
Michele Cali` Quaglia ◽  
Michael R. von Spakovsky ◽  
Bhavani V. Kasula

Mathematical models that predict performance can aid in the understanding and development of solid oxide fuel cells (SOFCs). Of course, various modeling approaches exist involving different length scales. In particular, very significant advances are now taking place using microscopic models to understand the complex composite structures of electrodes and three-phase boundaries. Ultimately these advances should lead to predictions of cell behavior, which at present are measured empirically and inserted into macroscopic cell models. In order to achieve this ambitious goal, simulation tools based on these macroscopic models must be redesigned by matching them to the complex microscopic phenomena, which take place at the pore scale level. As a matter of fact, the macroscopic continuum approach essentially consists of applying some type of homogenization technique, which properly averages the underlying microscopic phenomena for producing measurable quantities. Unfortunately, these quantities in the porous electrodes of fuel cells are sometimes measurable only in principle. For this reason, this type of approach introduces additional uncertainties into the macroscopic models, which can significantly affect the numerical results, particularly their generality. This paper is part of an ongoing effort to address the problem by following an alternative approach. The key idea is to numerically simulate the underlying microscopic phenomena in an effort to bring the mathematical description nearer to actual reality. In particular, some recently developed mesoscopic tools appear to be very promising since the microscopic approach is, in this particular case, partially included in the numerical method itself. In particular, the models based on the lattice Boltzmann method (LBM) treat the problem by reproducing the collisions among particles of the same type, among particles belonging to different species, and finally among the species and the solid obstructions. Recently, a model developed by the authors was proposed which, based on LBM, models the fluid flow of reactive mixtures in randomly generated porous media by simulating the actual coupling interaction among the species. A parallel three–dimensional numerical code was developed in order to implement this model and to simulate the actual microscopic structures of SOFC porous electrodes. In this paper, a thin anode (50 micron) of Ni-metal / YSZ-electrolyte cermet for a high–temperature electrolyte supported SOFC was considered in the numerical simulations. The three–dimensional anode structure was derived by a regression analysis based on the granulometry law applied to some microscopic pictures obtained with an electron microscope. The numerical simulations show the spatial distribution of the mass fluxes for the reactants and the products of the electrochemical reactions. The described technique will allow one to design new improved materials and structures in order to statistically optimize these fluid paths.


Sign in / Sign up

Export Citation Format

Share Document