The metal-metal interaction in coordination compounds. Magnetic properties. III. The dn dn and dn dm electron systems with positive exchange integral.

1967 ◽  
Vol 1 ◽  
pp. 329-334 ◽  
Author(s):  
W. Wojciechowski
1969 ◽  
Vol 22 (1) ◽  
pp. 121 ◽  
Author(s):  
IE Grey ◽  
PW Smith

The variation of magnetic susceptibility with temperature for a number of binuclear halide complexes of molybdenum of formula A3IMo2X9 (A = Cs, Et4N, Et3NH; X = Cl, Br) has been studied over the range 90-400�K. The magnetic behaviour is consistent with that expected for magnetically isolated exchange-coupled pairs of molybdenum atoms. The coupling is interpreted as occurring mainly by direct metal-metal interaction rather than superexchange.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 198-202
Author(s):  
Colin A. Gould ◽  
K. Randall McClain ◽  
Daniel Reta ◽  
Jon G. C. Kragskow ◽  
David A. Marchiori ◽  
...  

Magnetic effects of lanthanide bonding Lanthanide coordination compounds have attracted attention for their persistent magnetic properties near liquid nitrogen temperature, well above alternative molecular magnets. Gould et al . report that introducing metal-metal bonding can enhance coercivity. Reduction of iodide-bridged terbium or dysprosium dimers resulted in a single electron bond between the metals, which enforced alignment of the other valence electrons. The resultant coercive fields exceeded 14 tesla below 50 and 60 kelvin for the terbium and dysprosium compounds, respectively. —JSY


Sign in / Sign up

Export Citation Format

Share Document