scholarly journals Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization

2004 ◽  
Vol 39 (3) ◽  
pp. 343-368 ◽  
Author(s):  
C. Desceliers ◽  
C. Soize
Author(s):  
E. M. El Ghazzani ◽  
G. Bois ◽  
P. Geai ◽  
F. Leboeuf

A Clebsch formulation, completely equivalent to the Euler equations is implemented from an Eulerian type variational principle. It leads to the decomposition of the velocity field into a potential and a rotational part and, thus, provides a unified solution scheme for potential and Euler equations. Although based on an inviscid flow model, this formulation includes a loss scheme. The numerical method uses a finite element discretization. Particular treatment of convection terms allows a low numerical diffusion. A pseudo time evolution enables a better stability behaviour. Numerical calculations have been performed on an industrial configuration of spatial turbopump. Different comparisons ere showed between measurements, calculations without and with distributed losses.


2006 ◽  
Vol 16 (02) ◽  
pp. 233-263 ◽  
Author(s):  
Z. BELHACHMI ◽  
C. BERNARDI ◽  
S. DEPARIS ◽  
F. HECHT

We consider the Stokes problem in a three-dimensional axisymmetric domain and, by writing the Fourier expansion of its solution with respect to the angular variable, we observe that each Fourier coefficient satisfies a system of equations on the meridian domain. We propose a discretization of this problem which combines Fourier truncation and finite element methods applied to each of the two-dimensional systems. We give the detailed a priori and a posteriori analyses of the discretization and present some numerical experiments which are in good agreement with the analysis.


Author(s):  
Olivier A. Bauchau ◽  
Shilei Han

In flexible multibody systems, many components are often approximated as beams or shells. More often that not, classical beam theories, such as Euler-Bernoulli beam theory, form the basis of the analytical development for beam dynamics. The advantage of this approach is that it leads to a very simple kinematic representation of the problem: the beam’s section is assumed to remain plane and its displacement field is fully defined by three displacement and three rotation components. While such approach is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy adequately. For instance, it is well known from Saint-Venant’s theory for torsion that the cross-section will warp under torque, leading to a three-dimensional deformation state that generates a complex stress state. To overcome this problem, sectional stiffnesses are computed based on sophisticated mechanics of material theories that evaluate the complete state of deformation. These sectional stiffnesses are then used within the framework of an Euler-Bernoulli beam theory based on far simpler kinematic assumptions. While this approach works well for simple cross-sections made of homogeneous material, very inaccurate predictions result for realistic sections, specially for thin-walled beams, or beams made of anisotropic materials. This paper presents a different approach to the problem. Based on a finite element discretization of the cross-section, an exact solution of the theory of three-dimensional elasticity is developed. The only approximation is that inherent to the finite element discretization. The proposed approach is based on the Hamiltonian formalism and leads to an expansion of the solution in terms of extremity and central solutions, as expected from Saint-Venant’s principle.


Author(s):  
Olivier A. Bauchau ◽  
Shilei Han

In multibody systems, it is common practice to approximate flexible components as beams or shells. More often than not, classical beam theories, such as the Euler–Bernoulli beam theory, form the basis of the analytical development for beam dynamics. The advantage of this approach is that it leads to simple kinematic representations of the problem: the beam's section is assumed to remain plane and its displacement field is fully defined by three displacement and three rotation components. While such an approach is capable of accurately capturing the kinetic energy of the system, it cannot adequately represent the strain energy. For instance, it is well known from Saint-Venant's theory for torsion that the cross-section will warp under torque, leading to a three-dimensional deformation state that generates a complex stress state. To overcome this problem, sectional stiffnesses are computed based on sophisticated mechanics of material theories that evaluate the complete state of deformation. These sectional stiffnesses are then used within the framework of a Euler–Bernoulli beam theory based on far simpler kinematic assumptions. While this approach works well for simple cross-sections made of homogeneous material, inaccurate predictions may result for realistic configurations, such as thin-walled sections, or sections comprising anisotropic materials. This paper presents a different approach to the problem. Based on a finite element discretization of the cross-section, an exact solution of the theory of three-dimensional elasticity is developed. The only approximation is that inherent to the finite element discretization. The proposed approach is based on the Hamiltonian formalism and leads to an expansion of the solution in terms of extremity and central solutions, as expected from Saint-Venant's principle.


Sign in / Sign up

Export Citation Format

Share Document