scholarly journals Involvement of reactive oxygen species and nitric oxide on gastric ischemia-reperfusion injury in rat: Protective effect of tetrahydrobiopterin.

1999 ◽  
Vol 79 ◽  
pp. 203
Author(s):  
Masakazu Ishii ◽  
Shunichi Shimizu ◽  
Shuichi Nawata ◽  
Yuji Kiuchi ◽  
Toshinori Yamamoto
2019 ◽  
Vol 11 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Jonathan E. Palmer ◽  
Breanna M. Brietske ◽  
Tyler C. Bate ◽  
Erik A. Blackwood ◽  
Manasa Garg ◽  
...  

2019 ◽  
Vol 317 (1) ◽  
pp. H156-H163 ◽  
Author(s):  
Aleksandra Stamenkovic ◽  
Grant N. Pierce ◽  
Amir Ravandi

Cell death is an important component of the pathophysiology of any disease. Myocardial disease is no exception. Understanding how and why cells die, particularly in the heart where cardiomyocyte regeneration is limited at best, becomes a critical area of study. Ferroptosis is a recently described form of nonapoptotic cell death. It is an iron-mediated form of cell death that occurs because of accumulation of lipid peroxidation products. Reactive oxygen species and iron-mediated phospholipid peroxidation is a hallmark of ferroptosis. To date, ferroptosis has been shown to be involved in cell death associated with Alzheimer’s disease, Huntington’s disease, cancer, Parkinson’s disease, and kidney degradation. Myocardial reperfusion injury is characterized by iron deposition as well as reactive oxygen species production. These conditions, therefore, favor the induction of ferroptosis. Currently there is no available treatment for reperfusion injury, which accounts for up to 50% of the final infarct size. This review will summarize the evidence that ferroptosis can induce cardiomyocyte death following reperfusion injury and the potential for this knowledge to open new therapeutic approaches for myocardial ischemia-reperfusion injury.


1997 ◽  
Vol 272 (5) ◽  
pp. L897-L902 ◽  
Author(s):  
J. J. Zulueta ◽  
R. Sawhney ◽  
F. S. Yu ◽  
C. C. Cote ◽  
P. M. Hassoun

Reactive oxygen species (ROS) play an important role in the pathogenesis of ischemia-reperfusion injury. Extracellular H2O2 generation from bovine pulmonary artery endothelial cells (EC) is known to increase in response to anoxia-reoxygenation (A-R). To determine potential sources of intracellular ROS formation in EC in response to A-R, a fluorometric assay based on the oxidation of 2',7'-dichlorofluorescin was used. Intracellular ROS production declined 40% during 6 h of anoxia (P < 0.05). After A-R, the rates of intracellular ROS formation increased to 148 +/- 9% (P < 0.001) that of normoxic EC (100 +/- 3%). In EC exposed to A-R, allopurinol and NG-methyl-L-arginine (L-NMMA), inhibitors of xanthine oxidase (XO) and nitric oxide synthase (NOS), respectively, reduced intracellular ROS formation by 25 +/- 1% (P < 0.001) and 36 +/- 4% (P < 0.01). Furthermore, at low doses (i.e., 20 microM), deferoxamine and diethylenetriaminepentaacetic acid (DTPA) significantly inhibited intracellular ROS formation. However, at 100 microM, only deferoxamine caused further reduction in DCF fluorescence. In summary, EC respond to A-R by generating increased amounts of XO- and NOS-derived intracellular ROS. The inhibition, to a similar extent, caused by allopurinol and L-NMMA, as well as the effect of deferoxamine and DTPA suggest that the ROS detected is peroxynitrite. Based on these findings and previous work, we conclude that EC generate ROS in response to A-R from at least two different sources: a plasma membrane-bound NADPH oxidase-like enzyme that releases H2O2 extracellularly and XO, which generates intracellular O2-, which in turn may react with nitric oxide to form peroxynitrite.


Sign in / Sign up

Export Citation Format

Share Document