scholarly journals Targeting of intragraft reactive oxygen species by APP‐103, a novel polymer product, mitigates ischemia/reperfusion injury and promotes the survival of renal transplants

2020 ◽  
Vol 20 (6) ◽  
pp. 1527-1537 ◽  
Author(s):  
Koichiro Minami ◽  
Soochan Bae ◽  
Hirofumi Uehara ◽  
Chen Zhao ◽  
Dongwon Lee ◽  
...  
2019 ◽  
Vol 11 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Jonathan E. Palmer ◽  
Breanna M. Brietske ◽  
Tyler C. Bate ◽  
Erik A. Blackwood ◽  
Manasa Garg ◽  
...  

2019 ◽  
Vol 317 (1) ◽  
pp. H156-H163 ◽  
Author(s):  
Aleksandra Stamenkovic ◽  
Grant N. Pierce ◽  
Amir Ravandi

Cell death is an important component of the pathophysiology of any disease. Myocardial disease is no exception. Understanding how and why cells die, particularly in the heart where cardiomyocyte regeneration is limited at best, becomes a critical area of study. Ferroptosis is a recently described form of nonapoptotic cell death. It is an iron-mediated form of cell death that occurs because of accumulation of lipid peroxidation products. Reactive oxygen species and iron-mediated phospholipid peroxidation is a hallmark of ferroptosis. To date, ferroptosis has been shown to be involved in cell death associated with Alzheimer’s disease, Huntington’s disease, cancer, Parkinson’s disease, and kidney degradation. Myocardial reperfusion injury is characterized by iron deposition as well as reactive oxygen species production. These conditions, therefore, favor the induction of ferroptosis. Currently there is no available treatment for reperfusion injury, which accounts for up to 50% of the final infarct size. This review will summarize the evidence that ferroptosis can induce cardiomyocyte death following reperfusion injury and the potential for this knowledge to open new therapeutic approaches for myocardial ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document