scholarly journals Release of calcitonin gene-related peptide (CGRP) from perivascular nerves in the rat mesenteric artery

1989 ◽  
Vol 49 ◽  
pp. 244
Author(s):  
Akira Fujimori ◽  
Akira Saito ◽  
Sadao Kimura ◽  
Yasuo Uchiyama ◽  
Hiromu Kawasaki ◽  
...  
2020 ◽  
Vol 40 (5) ◽  
pp. 1207-1219 ◽  
Author(s):  
Jennifer van der Horst ◽  
Rian W. Manville ◽  
Katie Hayes ◽  
Morten B. Thomsen ◽  
Geoffrey W. Abbott ◽  
...  

Objective: Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. Conclusions: Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.


1986 ◽  
Vol 70 (4) ◽  
pp. 389-393 ◽  
Author(s):  
A. D. Struthers ◽  
M. J. Brown ◽  
D. W. R. Macdonald ◽  
J. L. Beacham ◽  
J. C. Stevenson ◽  
...  

1. In addition to calcitonin and katacalcin, it is now known that the human calcitonin gene encodes a novel peptide called calcitonin gene related peptide (CGRP). In experimental animals, CGRP produces vasodilatation and complex changes in plasma calcium. 2. We have now assessed its biological activity in man by infusing human CGRP (hCGRP) into six normal volunteers. hCGRP (545 pmol/min) caused the diastolic pressure to fall from 64 ± 5 to 55 ± 7mmHg (P < 0.05), the heart rate to increase from 61 ± 7 to 87 ± 5 beats/min (P < 0.05) and the skin temperature to increase from 33.7 ± 0.9 to 34.9 ± 0.5°C. Plasma noradrenaline increased from 481 ± 126 to 835 ± 65 pg/ml (P < 0.05) and plasma adrenaline from 57 ± 17 to 82 ± 12 pg/ml (P < 0.05). There were no significant changes in the albumin-corrected plasma calcium. 3. hCGRP is thus a potent endogenous vasodilator in man and is in fact more potent than any other known vasodilator. Together with the observations that CGRP circulates in normal subjects at relatively high concentration (approximately 25 pmol/l) and that CGRP is present in perivascular nerves, this study suggests a possible role for CGRP in controlling peripheral vascular tone in man.


Sign in / Sign up

Export Citation Format

Share Document