The asymptotic solution of the three-dimensional problem of the theory of elasticity for plates of incompressible materials

2002 ◽  
Vol 66 (2) ◽  
pp. 283-295 ◽  
Author(s):  
L.A. Agalovyan ◽  
R.C. Gevorkyan ◽  
A.V. Saakyan
2019 ◽  
Vol 968 ◽  
pp. 496-510
Author(s):  
Anatoly Grigorievich Zelensky

Classical and non-classical refined theories of plates and shells, based on various hypotheses [1-7], for a wide class of boundary problems, can not describe with sufficient accuracy the SSS of plates and shells. These are boundary problems in which the plates and shells undergo local and burst loads, have openings, sharp changes in mechanical and geometric parameters (MGP). The problem also applies to such elements of constructions that have a considerable thickness or large gradient of SSS variations. The above theories in such cases yield results that can differ significantly from those obtained in a three-dimensional formulation. According to the logic in such theories, the accuracy of solving boundary problems is limited by accepted hypotheses and it is impossible to improve the accuracy in principle. SSS components are usually depicted in the form of a small number of members. The systems of differential equations (DE) obtained here have basically a low order. On the other hand, the solution of boundary value problems for non-thin elastic plates and shells in a three-dimensional formulation [8] is associated with great mathematical difficulties. Only in limited cases, the three-dimensional problem of the theory of elasticity for plates and shells provides an opportunity to find an analytical solution. The complexity of the solution in the exact three-dimensional formulation is greatly enhanced if complex boundary conditions or physically nonlinear problems are considered. Theories in which hypotheses are not used, and SSS components are depicted in the form of infinite series in transverse coordinates, will be called mathematical. The approximation of the SSS component can be adopted in the form of various lines [9-16], and the construction of a three-dimensional problem to two-dimensional can be accomplished by various methods: projective [9, 14, 16], variational [12, 13, 15, 17]. The effectiveness and accuracy of one or another variant of mathematical theory (MT) depends on the complex methodology for obtaining the basic equations.


1952 ◽  
Vol 19 (1) ◽  
pp. 19-27
Author(s):  
E. Sternberg ◽  
M. A. Sadowsky

Abstract This paper contains a solution in series form for the stress distribution in an infinite elastic medium which possesses two spherical cavities of the same size. The loading consists of tractions applied to the cavities, as well as of a uniform field of tractions at infinity, and both are assumed to be symmetric with respect to the common axis of symmetry of the cavities and with respect to the plane of geometric symmetry perpendicular to this axis. The loading is otherwise unrestricted. The solution is based upon the Boussinesq stress-function approach and apparently constitutes the first application of spherical dipolar co-ordinates in the theory of elasticity. Numerical evaluations are given for the case in which the surfaces of the cavities are free from tractions and the stress field at infinity is hydrostatic. The results illustrate the interference of two sources of stress concentration in a three-dimensional problem. The approach used here may be extended to cope with the general equilibrium problem for a region bounded by two nonconcentric spheres.


2014 ◽  
Vol 8 (2) ◽  
pp. 83-87
Author(s):  
Roman Kulchytsky-zhyhailo ◽  
Waldemar Kołodziejczyk

Abstract A three-dimensional problem of the theory of elasticity for halfspace with multilayered coating with periodical structure is considered. The fundamental layer consists of two layers with different thicknesses and different mechanical properties. The coating is described by the homogenized model with microlocal parameters. The solution is derived by using integral Fourier transform. Calculations were conducted with the assumption of elliptical distribution of normal and tangential tractions applied to the surface of the layered system in a cir-cular area. Analysis of the stresses was restricted to the first principal stress distribution.


Sign in / Sign up

Export Citation Format

Share Document