scholarly journals Purification and properties of a polymorphic high activity equine erythrocyte carbonic anhydrase.

1977 ◽  
Vol 252 (2) ◽  
pp. 555-559
Author(s):  
H F Deutsch ◽  
J R Jabusch ◽  
K T Lin
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2452
Author(s):  
Chia-Jung Hsieh ◽  
Ju-Chuan Cheng ◽  
Chia-Jung Hu ◽  
Chi-Yang Yu

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.


1969 ◽  
Vol 54 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Michael B. Fairbanks ◽  
J. Russell Hoffert ◽  
Paul O. Fromm

Microoxygen polarographic electrodes were constructed and used to measure oxygen tension (POO2) in the eyes of rainbow trout (Salmo gairdneri). The values obtained are compared with arterial blood and environmental water POO2 and indicate that there is an oxygen-concentrating mechanism in the eye supplying oxygen to the avascular retina. Anatomically similar retes suggest that the mechanism is similar to the one which exists in the swim bladder. Elimination of the arterial blood supply to the choroidal gland rete mirabile of the eye (through pseudobranchectomy) and the consequent lowering of ocular oxygen tensions implicate the choroidal gland as one of the major components of the oxygen-concentrating mechanism. After pseudobranchectomy the presence of ocular POO2 above that of arterial blood is indicative of a secondary structure in the eye capable of concentrating oxygen. Inhibition of carbonic anhydrase, using acetazolamide, is shown to result in complete suppression of the oxygen-concentrating mechanism. A hypothesis is advanced for the participation of retinal-choroidal and erythrocyte carbonic anhydrase in the oxygen-concentrating mechanism.


Sign in / Sign up

Export Citation Format

Share Document