oxygen inhibition
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 40)

H-INDEX

34
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3750
Author(s):  
Pin-Chuan Chen ◽  
Po-Tsang Chen ◽  
Tuan Ngoc Anh Vo

Stereolithographic printing (SL) is widely used to create mini/microfluidic devices; however, the formation of microchannels smaller than 500 μm with good inner surface quality is still challenging due to the printing resolution of current commercial printers and the z-overcure error and scalloping phenomena. In the current study, we used SL printing to create microchannels with the aim of achieving a high degree of dimensional precision and a high-quality microchannel inner surface. Extensive experiments were performed and our results revealed the following: (1) the SL printing of microchannels can be implemented in three steps including channel layer printing, an oxygen inhibition process, and roof layer printing; (2) printing thickness should be reduced to minimize the scalloping phenomenon, which significantly improves dimensional accuracy and the quality of inner microchannel surfaces; (3) the inclusion of an oxygen inhibition step is a critical and efficient approach to suppressing the z-overcure error in order to eliminate the formation of in-channel obstructions; (4) microchannels with an extremely high aspect ratio of 40:1 (4000 μm in height and 100 μm in width) can be successfully manufactured within one hour by following the three-step printing process.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3253
Author(s):  
Irina Larionova ◽  
Elena Kazakova ◽  
Tatiana Gerashchenko ◽  
Julia Kzhyshkowska

Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.


Author(s):  
Jui-Teng Lin ◽  
Jacques Lalevee ◽  
Da-Chun Cheng

. This article presents, for the first time, the kinetics and the general conversion features of a 3-component system (A/B/N), based on proposed mechanism of Mau et al, for both free radical polymerization (FRP) of acrylates and the free radical promoted cationic polymerization (CP) of epoxides using various new copper complex (G2) as the initiator. Higher FRP and CP conversion can be achieved by co-additive of [B] and N, via the dual function of (i) regeneration [A], and (ii) generation of extra radicals. The FRP and CP conversion efficacy (CE) are proportional to the nonlinear power of bI[A][B], where b and I are the effective absorption coefficient and the light intensity, respectively. In the interpenetrated polymer network (IPN) capable of initiating both FRP and CP in a blend of TMPTA and EPOX, (as the monomer for FRP and CP, respectively), the synergic effects due to CP include:: (i) CP can increase viscosity limiting the diffusional oxygen replenishment, such that oxygen inhibition effects are reduced; (ii) the cationic monomer also acts as a diluting agent for the IPN network , and (iii) the exothermic property of the CP. Many new findings are explored via our analytical formuals include: (i) the CE of FRP is about twice of the CE of CP, due to the extra radicals involved in FRP; (ii) the catalytic cycle enhancing the efficacy is mainly due to the regenaration of the initiator, and (iii) the nonlinear dependence of light intensity of the CE (in both FRP and CP). For the first time, the catalytic cycle, synergic effects, and the oxygen inhibition are theoretically confirmed to support the experimental hypothesis. The measured results of Mau et al are well analyzed and matching the predicted features of our modeling. .


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Rok Simič ◽  
Nicholas D. Spencer

AbstractHydrogel surfaces are of great interest in applications ranging from cell scaffolds and transdermal drug-delivery patches to catheter coatings and contact lenses. In this work, we propose a method to control the surface structure of hydrogels, thereby tailoring their frictional properties. The method is based on oxygen inhibition of the free-radical polymerization reaction during synthesis and enables (i) control of friction over more than an order in magnitude and (ii) spatial control of friction as either a continuous gradient or a distinct pattern. The presented method has successfully been applied to acrylamide-, diacrylate- and methacrylate-based gels, illustrating the universality of the presented method, and its potential use in the above-mentioned applications. Graphical Abstract


2021 ◽  
Author(s):  
Rok Simič ◽  
Nicholas D. Spencer

Abstract Hydrogel surfaces are of great interest in applications ranging from cell scaffolds and transdermal drug-delivery patches to catheter coatings and contact lenses. In this work we propose a method to control the surface structure of hydrogels, thereby tailoring their frictional properties. The method is based on oxygen inhibition of the free-radical polymerization reaction during synthesis and enables (i) control of friction over more than an order in magnitude and (ii) spatial control of friction as either a continuous gradient or a distinct pattern. The presented method has successfully been applied to acrylamide-, diacrylate- and methacrylate-based gels, illustrating the universality of the presented method, and its potential use in the above-mentioned applications.


2021 ◽  
Vol 32 (1) ◽  
pp. 91-97
Author(s):  
Marcela Gonçalves Borges ◽  
Gisele Rodrigues Silva ◽  
Fernanda Teodoro Neves ◽  
Carlos José Soares ◽  
André Luís Faria-e-Silva ◽  
...  

Abstract This study investigated the effects of oxygen inhibition and finishing/polishing procedures on the composite resin properties. One bulk-fill and two conventional composite resins (nanoparticle and microhybrid) were evaluated. Specimens were prepared using 4 surface treatments: control, no treatment; Gly, oxygen inhibition with glycerin; FP, finishing and polishing; Gly + FP, glycerin followed by finishing and polishing. The degree of conversion (DC) was measured using Fourier Transformed Infrared Spectroscopy (FTIR) immediately and after 15 days (n=5). Color stability (ΔEab, and ΔE00) and opacity were evaluated using a spectrophotometer after 15 days of immersion in coffee, using the CIELAB system (n=5). Data were analyzed by two-way ANOVA and Tukey tests (α=0.05) and opacity by two-way repeated-measures ANOVA. Glycerin usage increased significantly the DC however had no influence on the ΔEab, ΔE00 and, opacity values. Finishing and polishing reduced ΔEab and ΔE00 values, regardless of composite resins. Microhybrid showed higher opacity, followed by the nanoparticle and bulk fill, regardless of surface treatment. Post-polymerization polishing procedures resulted in lower conversion than using an oxygen inhibitor agent (Gly condition), but similar staining caused by coffee.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rok Simic ◽  
Joydeb Mandal ◽  
Kaihuan Zhang ◽  
Nicholas D. Spencer

Hydrogel surfaces are of great importance in numerous applications ranging from cell-growth studies and hydrogel-patch adhesion to catheter coatings and contact lenses. A common method to control the structure and...


2021 ◽  
Vol 717 ◽  
pp. 138467
Author(s):  
Jiaxin Zhao ◽  
Susu Chen ◽  
Wenlu Su ◽  
Lin Zhu ◽  
Xiao Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document