scholarly journals A relation between (NAD+)/(NADH) potentials and glucose utilization in rat brain slices.

1976 ◽  
Vol 251 (13) ◽  
pp. 4127-4130
Author(s):  
G Gibson ◽  
J P Blass
Author(s):  
Takaaki Kitano ◽  
Naoko Nisimaru ◽  
Eriko Shibata ◽  
Hideo Iwasaka ◽  
Takayuki Noguchi ◽  
...  

1986 ◽  
Vol 234 (2) ◽  
pp. 489-492 ◽  
Author(s):  
E Fernández ◽  
J M Medina

The maximum rates of lactate oxidation and lipogenesis from lactate by early-neonatal brain slices were considerably greater than those for utilization of glucose and 3-hydroxybutyrate at physiological concentrations. Lactate inhibited glucose utilization, but enhanced 3-hydroxybutyrate utilization. 3-Hydroxybutyrate inhibited lactate and glucose utilization. Glucose slightly inhibited oxidation of lactate and 3-hydroxybutyrate, but scarcely enhanced lipogenesis from these substrates.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S468-S468
Author(s):  
Jennifer K Callaway ◽  
Christine Molnar ◽  
Song T Yao ◽  
Bevyn Jarrott ◽  
R David Andrew

1983 ◽  
Vol 245 (4) ◽  
pp. R556-R563 ◽  
Author(s):  
J. K. Tews ◽  
A. E. Harper

Transport of histidine, valine, or lysine into rat brain slices and across the blood-brain barrier (BBB) was determined in the presence of atypical nonprotein amino acids. Competitors of histidine and valine transport in slices were large neutral amino acids including norleucine, norvaline, alpha-aminooctanoate, beta-methylphenylalanine, and alpha-aminophenylacetate. Less effective were aromatic amino acids with ring substituents; ineffective were basic amino acids and omega-amino isomers of norleucine and aminooctanoate. Lysine transport was moderately depressed by homoarginine or ornithine plus arginine; large neutral amino acids were also similarly inhibitory. Histidine or valine transport across the BBB was also strongly inhibited by large neutral amino acids that were the most effective competitors in the slices (norvaline, norleucine, alpha-aminooctanoate, and alpha-aminophenylacetate); homoarginine and 8-aminooctanoate were ineffective. Homoarginine, ornithine, and arginine almost completely blocked lysine transport, but the large neutral amino acids were barely inhibitory. When rats were fed a single meal containing individual atypical large neutral amino acids or homoarginine, brain pools of certain large neutral amino acids or of arginine and lysine, respectively, were depleted.


1995 ◽  
Vol 67 (4) ◽  
pp. 399-402
Author(s):  
Kaoru Kondo ◽  
Hitoshi Hashimoto ◽  
Kazuko Sakata ◽  
Hiroshi Saga ◽  
Jun-ichi Kitanaka ◽  
...  

1993 ◽  
Vol 291 (2) ◽  
pp. 369-374 ◽  
Author(s):  
W S Faraci ◽  
S H Zorn ◽  
A V Bakker ◽  
E Jackson ◽  
K Pratt

Despite limiting side-effects, lithium is the drug of choice for the treatment of bipolar depression. Its action may be due, in part, to its ability to dampen phosphatidylinositol turnover by inhibiting myo-inositol monophosphatase. Beryllium has been identified as a potent inhibitor of partially purified myo-inositol monophosphatase isolated from rat brain (Ki = 150 nM), bovine brain (Ki = 35 nM), and from the human neuroblastoma cell line SK-N-SH (Ki = 85 nM). It is over three orders of magnitude more potent than LiCl (Ki = 0.5-1.2 mM). Kinetic analysis reveals that beryllium is a competitive inhibitor of myo-inositol monophosphatase, in contrast with lithium which is an uncompetitive inhibitor. Inhibition of exogenous [3H]inositol phosphate hydrolysis by beryllium (IC50 = 250-300 nM) was observed to the same maximal extent as that seen with lithium in permeabilized SK-N-SH cells, reflecting inhibition of cellular myo-inositol monophosphatase. However, in contrast with that observed with lithium, agonist-induced accumulation of inositol phosphate was not observed with beryllium in permeabilized and non-permeabilized SK-N-SH cells and in rat brain slices. Similar results were obtained in permeabilized SK-N-SH cells when GTP-gamma-S was used as an alternative stimulator of inositol phosphate accumulation. The disparity in the actions of beryllium and lithium suggest that either (1) selective inhibition of myo-inositol monophosphatase does not completely explain the action of lithium on the phosphatidylinositol cycle, or (2) that uncompetitive inhibition of myo-inositol monophosphatase is a necessary requirement to observe functional lithium mimetic activity.


1976 ◽  
Vol 26 (5) ◽  
pp. 1007-1014 ◽  
Author(s):  
L. P. Davies ◽  
G. A. R. Johnston

Sign in / Sign up

Export Citation Format

Share Document