human neuroblastoma cell
Recently Published Documents


TOTAL DOCUMENTS

649
(FIVE YEARS 105)

H-INDEX

51
(FIVE YEARS 6)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
David J. Wright ◽  
Nicola A. L. Hall ◽  
Naomi Irish ◽  
Angela L. Man ◽  
Will Glynn ◽  
...  

Abstract Background Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line SH-SY5Y, and to characterise isoform expression and usage across differentiation. Results We identify many previously unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene, CACNA2D2. We show differential expression and usage of transcripts during differentiation identifying candidates for future research into state change regulation. Conclusions Our work highlights the potential of long read sequencing to uncover previously unknown transcript diversity and mechanisms influencing alternative splicing.


Author(s):  
Krishnaprabha Naduchamy ◽  
Varadarajan Parthasarathy

Aim: This study was aimed to investigate the cytotoxic effect of ethanol extract of Abrus precatorius. leaves on Raw 264.7 and SK-N-SH cell lines. Methodology: Soxhlet extraction was carried out using absolute alcohol and subsequently, the profiling of phytoconstituents of ethanol extract was performed by LC-MS analysis. Results: The results showed that the presence of anthocyanin, phenolic acid, carboxylic acid, amino acid and monoester in ethanol extract of Abrus precatorius. The phytoconstituents such as picolinic acid, N-Acetyl-DL-tryptophan, 3-Hydroxybenzoic acid, kuromanin, aflatoxin G2, monobutyl Phthalate, laurolactam, 4-Dodecylbenzenesulfonic acid, 4-Methoxycinnamic acid, caffeic acid and octyl decyl phthalate were found  in ethanol extract. In addition to this, the cytotoxic effect of the ethanol extract was tested on Raw 264.7 and SK-N-SH cell lines using MTT assay. The cytotoxic study revealed that the ethanol extract of Abrus precatorius was non-toxic to Raw 264.7 cell, but it showed a toxic effect on human neuroblastoma cell line, SK-N-SH. Conclusion: In this study, it was observed that the ethanol extract of Abrus precatorius was non-toxic to Raw 264.7 cell line, but it exhibited strong inhibition on the viability of SK-N-SH cell line.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 348
Author(s):  
Raúl Bonne Hernández ◽  
Nadja C. de Souza-Pinto ◽  
Jos Kleinjans ◽  
Marcel van Herwijnen ◽  
Jolanda Piepers ◽  
...  

Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 859
Author(s):  
Nur Atiqah Haizum Abdullah ◽  
Muhamad Rusdi Ahmad Rusmili ◽  
Syafiq Asnawi Zainal Abidin ◽  
Mohd Farooq Shaikh ◽  
Wayne C. Hodgson ◽  
...  

Phospholipase A2 (PLA2) toxins are one of the main toxin families found in snake venom. PLA2 toxins are associated with various detrimental effects, including neurotoxicity, myotoxicity, hemostatic disturbances, nephrotoxicity, edema, and inflammation. Although Naja sumatrana venom contains substantial quantities of PLA2 components, there is limited information on the function and activities of PLA2 toxins from the venom. In this study, a secretory PLA2 from the venom of Malaysian N. sumatrana, subsequently named A2-EPTX-Nsm1a, was isolated, purified, and characterized. A2-EPTX-Nsm1a was purified using a mass spectrometry-guided approach and multiple chromatography steps. Based on LC-MSMS, A2-EPTX-Nsm1a was found to show high sequence similarity with PLA2 from venoms of other Naja species. The PLA2 activity of A2-EPTX-Nsm1 was inhibited by 4-BPB and EDTA. A2-EPTX-Nsm1a was significantly less cytotoxic in a neuroblastoma cell line (SH-SY5Y) compared to crude venom and did not show a concentration-dependent cytotoxic activity. To our knowledge, this is the first study that characterizes and investigates the cytotoxicity of an Asp49 PLA2 isolated from Malaysian N. sumatrana venom in a human neuroblastoma cell line.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tae-Gyun Woo ◽  
Min-Ho Yoon ◽  
So-mi Kang ◽  
Soyoung Park ◽  
Jung-Hyun Cho ◽  
...  

AbstractAmyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Ghafarkhani ◽  
Cigir Biray Avci ◽  
Reza Rahbarghazi ◽  
Abbas Karimi ◽  
Majid Sadeghizadeh ◽  
...  

AbstractUnraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6023
Author(s):  
Christina Hassiepen ◽  
Aashish Soni ◽  
Ines Rudolf ◽  
Vivian Boron ◽  
Sebastian Oeck ◽  
...  

High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable outcome in several solid tumors of childhood including neuroblastoma. During development, TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here, we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability upon IR compared to vector control cells. This was accompanied by a deficient G2/M-checkpoint at both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF). TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the response to IR.


2021 ◽  
Author(s):  
Wangshu Xu ◽  
Wenqun Zhang ◽  
Lili Cui ◽  
Lei Shi ◽  
Bin Zhu ◽  
...  

Abstract Objective: Early infantile epileptic encephalopathy (EIEE) is a group of disorders affecting children at early stages of infancy, which is characterized by frequent seizures, epileptiform activity on EEG, and developmental retardation or regression. Salt-inducible kinases (SIKs) syndrome is a newly described EIEE, caused by heterozygous mutations in the salt-inducible kinase SIK1, which can present as early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Methods: In this study, we investigated a patient with early onset epilepsy. DNA sequencing of the whole coding region revealed a de novel heterozygous nucleotide substitution (c.880G>A) causing a missense mutation (p.A294T). This mutation was classified as variant of unknown significance (VUS) by American College of Medical Genetics and Genomics (ACMG). To further investigate the pathogenicity and pathogenesis of this mutation, we established a human neuroblastoma cell line (SH-SY5Y) stably-expressing wild type SIK1 and A294T mutant, and compared the transcriptome and metabolomics profiles. Results: We presented a pediatric patient suffering from infantile onset epilepsy. Early EEG showed a boundary dysfunction of activity and MRI scan of the brain was normal. The patient responded well to single anti-epileptic drug treatment. Whole-exome sequencing found a missense mutation of SIK1 gene (c.880G>A chr21: 43420326 p. A294T). Dysregulated transcriptome and metabolome in cell models expressing WT and MUT SIK1 confirmed the pathogenicity of the mutation. Specifically, we found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation.We found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation. Significance: Our finding further expanded the disease spectrum and provided novel mechanistic insights of SIK1 syndrome.


Development ◽  
2021 ◽  
Vol 148 (22) ◽  
Author(s):  
Jason A. Morrison ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Allison R. Scott ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACT The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


2021 ◽  
Vol 22 (22) ◽  
pp. 12291
Author(s):  
Byungjo Lee ◽  
Min Kyoung Shin ◽  
In-Wook Hwang ◽  
Junghyun Jung ◽  
Yu Jeong Shim ◽  
...  

As major components of spider venoms, neurotoxic peptides exhibit structural diversity, target specificity, and have great pharmaceutical potential. Deep learning may be an alternative to the laborious and time-consuming methods for identifying these peptides. However, the major hurdle in developing a deep learning model is the limited data on neurotoxic peptides. Here, we present a peptide data augmentation method that improves the recognition of neurotoxic peptides via a convolutional neural network model. The neurotoxic peptides were augmented with the known neurotoxic peptides from UniProt database, and the models were trained using a training set with or without the generated sequences to verify the augmented data. The model trained with the augmented dataset outperformed the one with the unaugmented dataset, achieving accuracy of 0.9953, precision of 0.9922, recall of 0.9984, and F1 score of 0.9953 in simulation dataset. From the set of all RNA transcripts of Callobius koreanus spider, we discovered neurotoxic peptides via the model, resulting in 275 putative peptides of which 252 novel sequences and only 23 sequences showing homology with the known peptides by Basic Local Alignment Search Tool. Among these 275 peptides, four were selected and shown to have neuromodulatory effects on the human neuroblastoma cell line SH-SY5Y. The augmentation method presented here may be applied to the identification of other functional peptides from biological resources with insufficient data.


Sign in / Sign up

Export Citation Format

Share Document