scholarly journals Characterization of verapamil binding sites in cardiac membrane vesicles.

1984 ◽  
Vol 259 (24) ◽  
pp. 15013-15016 ◽  
Author(s):  
M L Garcia ◽  
M J Trumble ◽  
J P Reuben ◽  
G J Kaczorowski
1989 ◽  
Vol 13 ◽  
pp. S171-173 ◽  
Author(s):  
Xin-Hua Gu ◽  
David J. Casley ◽  
Winifred G. Nayler

1994 ◽  
Vol 26 (7) ◽  
pp. 915-923 ◽  
Author(s):  
Nancy Bowling ◽  
Gregory P. Dubé ◽  
William L. Kurtz ◽  
Kellie A. Brune ◽  
David L. Saussy ◽  
...  

1992 ◽  
Vol 67 (05) ◽  
pp. 582-584 ◽  
Author(s):  
Ichiro Miki ◽  
Akio Ishii

SummaryWe characterized the thromboxane A2/prostaglandin H2 receptors in porcine coronary artery. The binding of [3H]SQ 29,548, a thromboxane A2 antagonist, to coronary arterial membranes was saturable and displaceable. Scatchard analysis of equilibrium binding showed a single class of high affinity binding sites with a dissociation constant of 18.5 ±1.0 nM and the maximum binding of 80.7 ± 5.2 fmol/mg protein. [3H]SQ 29,548 binding was concentration-dependently inhibited by thromboxane A2 antagonists such as SQ 29,548, BM13505 and BM13177 or the thromboxane A2 agonists such as U46619 and U44069. KW-3635, a novel dibenzoxepin derivative, concentration-dependently inhibited the [3H]SQ 29,548 binding to thromboxane A2/prosta-glandin H2 receptors in coronary artery with an inhibition constant of 6.0 ± 0.69 nM (mean ± S.E.M.).


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


Sign in / Sign up

Export Citation Format

Share Document