scholarly journals Novel DNA rearrangements are associated with dihydrofolate reductase gene amplification.

1984 ◽  
Vol 259 (14) ◽  
pp. 9127-9140
Author(s):  
N A Federspiel ◽  
S M Beverley ◽  
J W Schilling ◽  
R T Schimke
Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 633-644
Author(s):  
M Kimmel ◽  
D E Axelrod

Abstract An increased number of copies of specific genes may offer an advantage to cells when they grow in restrictive conditions such as in the presence of toxic drugs, or in a tumor. Three mathematical models of gene amplification and deamplification are proposed to describe the kinetics of unstable phenotypes of cells with amplified genes. The models differ in details but all assume probabilistic mechanisms of increase and decrease in gene copy number per cell (gene amplification/deamplification). Analysis of the models indicates that a stable distribution of numbers of copies of genes per cell, observed experimentally, exists only if the probability of deamplification exceeds the probability of amplification. The models are fitted to published data on the loss of methotrexate resistance in cultured cell lines, due to the loss of amplified dihydrofolate reductase gene. For two mouse cell lines unstably resistant to methotrexate the probabilities of amplification and deamplification of the dihydrofolate reductase gene on double minute chromosomes are estimated to be approximately 2% and 10%, respectively. These probabilities are much higher than widely presumed. The models explain the gradual disappearance of the resistant phenotype when selective pressure is withdrawn, by postulating that the rate of deamplification exceeds the rate of amplification. Thus it is not necessary to invoke a growth advantage of nonresistant cells which has been the standard explanation. For another analogous process, the loss of double minute chromosomes containing the myc oncogene from SEWA tumor cells, the growth advantage model does seem to be superior to the amplification and deamplification model. In a more theoretical section of the paper, it is demonstrated that gene amplification/deamplification can result in reduction to homozygosity, such as is observed in some tumors. Other applications are discussed.


2007 ◽  
Vol 11 (4) ◽  
pp. 265-272 ◽  
Author(s):  
Fernando B. Guijon ◽  
KM Greulich-Bode ◽  
Maria Paraskevas ◽  
Patricia Baker ◽  
Sabine Mai

1991 ◽  
Vol 115 (5) ◽  
pp. 1409-1418 ◽  
Author(s):  
T Lesuffleur ◽  
A Barbat ◽  
C Luccioni ◽  
J Beaumatin ◽  
M Clair ◽  
...  

Postconfluent cultures of HT-29 cells form a heterogeneous multilayer of which greater than 95% of the cells are undifferentiated. In contrast, when stably adapted to normally lethal concentrations of methotrexate (10(-6)-10(-5) M), they form a monolayer of gobletlike cells (Lesuffleur et al., 1990) which secrete large quantities of mucins and display a discrete brush border with the presence of villin, dipeptidylpeptidase-IV, and carcinoembryonic antigen. When adapted to even higher concentrations of methotrexate (10(-4) and 10(-3) M) there is a shift in the pattern of differentiation from gobletlike to dome-forming absorptive-like cells. These cells still display an apical brush border which expresses villin and dipeptidylpeptidase-IV, but no longer express significant levels of mucins and carcinoembryonic antigen. This shift of differentiation coincides with a sudden amplification of the gene coding for dihydrofolate reductase and an increased activity of the enzyme.


1983 ◽  
Vol 3 (6) ◽  
pp. 1097-1107 ◽  
Author(s):  
P C Brown ◽  
T D Tlsty ◽  
R T Schimke

We investigated various parameters associated with the initial selection of mouse 3T6 cells for resistance to single concentrations of methotrexate and characterized resistant colonies for the presence of additional (amplified) copies of the dihydrofolate reductase gene. Our results indicate that the frequency of occurrence of dihydrofolate reductase gene amplification varies with the selecting concentration of methotrexate and is highly variable between clonally derived sublines of mouse 3T6 cells. Second, we increased the frequency of occurrence of cells with amplified dihydrofolate reductase genes by transiently inhibiting DNA synthesis with hydroxyurea before the selection of cells in single concentrations of methotrexate. This effect was dependent on the concentration of hydroxyurea, the time of exposure to the drug, and the time interval between the removal of hydroxyurea and the selection of cells in methotrexate.


1984 ◽  
Vol 4 (6) ◽  
pp. 1050-1056
Author(s):  
T D Tlsty ◽  
P C Brown ◽  
R T Schimke

Pretreatment of 3T6 murine cells with the carcinogen UV radiation or N-acetoxy-N-acetylaminofluorene increased the number of methotrexate-resistant colonies. This carcinogen-induced enhancement was seen only at low toxicities. The enhancement was transient and was observed at its maximum when cells were subjected to methotrexate selection 12 to 24 h after treatment. The addition of a tumor-promoting agent, 12-O-tetradecanoylphorbol-13-acetate, during or after carcinogen treatment further enhanced this effect. A large proportion of the resistant colonies had an increase in the dihydrofolate reductase gene copy number and the relative proportions of colonies with amplified genes were similar, regardless of whether selected cells were untreated, treated with carcinogen, or treated with carcinogen plus promoter. We discuss some of the variables which both enhance the generation and improve the detection of methotrexate-resistant colonies, as well as certain implications of our results for the generation and mechanism of gene amplification.


Sign in / Sign up

Export Citation Format

Share Document