dna rearrangements
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 14)

H-INDEX

47
(FIVE YEARS 1)

Author(s):  
Arlin Stoltzfus

Well-studied cases of programmed DNA rearrangements, e.g., somatic recombination in the emergence of specific antibodies, suggest a rubric for specially evolved mutation systems: they amplify the rates of specific types of mutations (by orders of magnitude), subject to specific modulation, using dedicated parts, with the favored types of mutations being used repeatedly. Chapter 5 focuses on six types of systems that generate mutational diversity in a focused manner, often in an ecological context that makes sense of such a specialized feature, e.g., immune evasion or phage-host coevolution: cassette shuffling, phase variation (switching), CRISPR-Cas defenses, inversion shufflons, diversity-generating retro-elements, and mating-type switching. The emergence and influence of these systems relates to the concept of evolvability, here expressed in terms of three types of claims: evolvability as fact (E1), evolvability as explanans (E2), and evolvability as explanandum (E3).


2020 ◽  
Vol 9 (12) ◽  
pp. 3267-3287
Author(s):  
Elisa Pesenti ◽  
Mikhail Liskovykh ◽  
Koei Okazaki ◽  
Alessio Mallozzi ◽  
Caitlin Reid ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1711-1718
Author(s):  
Yi Feng ◽  
Leslie Y Beh ◽  
Wei-Jen Chang ◽  
Laura F Landweber

Abstract Ciliates are microbial eukaryotes with distinct somatic and germline genomes. Postzygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. Although many high-quality somatic genomes have been assembled, a high-quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline, SIGAR (Split-read Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences, and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements.


2020 ◽  
Vol 165 (10) ◽  
pp. 2355-2359
Author(s):  
Naoya Kitamura ◽  
Eri Sasabe ◽  
Shigenobu Matsuzaki ◽  
Masanori Daibata ◽  
Tetsuya Yamamoto

Abstract Two Staphylococcus aureus bacteriophages, KSAP7 and KSAP11, were isolated from sewage and characterized. Based on morphology and DNA sequences, they were assigned to the genus Silviavirus, subfamily Twortvirinae, family Herelleviridae, whose members are hypothesized to be suitable for bacteriophage therapy. The KSAP7 and KSAP11 genomes were 137,950 and 138,307 bp in size, respectively. Although their DNA sequences were almost identical, evidence of site-specific DNA rearrangements was found in two regions. Changes in the number of PIEPEK amino acid sequence repeats encoded by orf10 and the insertion/deletion of a 541-bp sequence that includes a possible tail-related gene were identified.


2020 ◽  
Author(s):  
Elisa Pesenti ◽  
Mikhail Liskovykh ◽  
Koei Okazaki ◽  
Alessio Mallozzi ◽  
Caitlin Reid ◽  
...  

AbstractHuman Artificial Chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN) and possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.


2020 ◽  
Author(s):  
Yi Feng ◽  
Leslie Y. Beh ◽  
Wei-Jen Chang ◽  
Laura F. Landweber

AbstractCiliates are microbial eukaryotes with distinct somatic and germline genomes. Post-zygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programmed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. While many high-quality somatic genomes have been assembled, a high quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline SIGAR (Splitread Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short germline DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Sylviane Furlan ◽  
Renata C. Matos ◽  
Sean P. Kennedy ◽  
Benoît Doublet ◽  
Pascale Serror ◽  
...  

ABSTRACT Commensal and generally harmless in healthy individuals, Enterococcus faecalis causes opportunistic infections in immunocompromised patients. Plasmid-cured E. faecalis strain VE14089, derived from sequenced reference strain V583, is widely used for functional studies due to its improved genetic amenability. Although strain VE14089 has no major DNA rearrangements, with the exception of an ∼20-kb integrated region of pTEF1 plasmid, the strain presented significant growth differences from the V583 reference strain of our collection (renamed VE14002). In the present study, genome sequencing of strain VE14089 identified additional point mutations. Excision of the integrated pTEF1 plasmid region and sequential restoration of wild-type alleles showing nonsilent mutations were performed to obtain the VE18379 reference-derivative strain. Recovery of the growth ability of the restored VE18379 strain at a level similar to that seen with the reference strain points to GreA and Spx as bacterial fitness determinants. Virulence potential in Galleria mellonella and intestinal colonization in mouse demonstrated host adaptation of the VE18379 strain equivalent to VE14002 host adaptation. We further demonstrated that deletion of the 16.8-kb variable region of the epa locus recapitulates the key role of Epa decoration in host adaptation, providing a genetic system to study the role of specific epa-variable regions in host adaptation independently of other genetic variations. IMPORTANCE E. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle.


Sign in / Sign up

Export Citation Format

Share Document