scholarly journals Import of proteins into mitochondria. Import and maturation of the mitochondrial intermembrane space enzymes cytochrome b2 and cytochrome c peroxidase in intact yeast cells.

1982 ◽  
Vol 257 (21) ◽  
pp. 13068-13074 ◽  
Author(s):  
G A Reid ◽  
T Yonetani ◽  
G Schatz
Mitochondrion ◽  
2007 ◽  
Vol 7 (6) ◽  
pp. 432-433
Author(s):  
Delphine Bernard ◽  
Sophie Quevillon-Cheruel ◽  
Sabeeha Merchant ◽  
Bernard Guiard ◽  
Patrice Hamel

2016 ◽  
Vol 214 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Non Miyata ◽  
Yasunori Watanabe ◽  
Yasushi Tamura ◽  
Toshiya Endo ◽  
Osamu Kuge

Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2–Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2–Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2–Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0232408 ◽  
Author(s):  
Hilda Mercado-Uribe ◽  
Mariana Andrade-Medina ◽  
Juan Horacio Espinoza-Rodríguez ◽  
Mauricio Carrillo-Tripp ◽  
Christian Quintus Scheckhuber

2014 ◽  
Vol 42 (4) ◽  
pp. 952-958 ◽  
Author(s):  
Carmelina Petrungaro ◽  
Jan Riemer

Eukaryotic cells developed diverse mechanisms to guide proteins to more than one destination within the cell. Recently, the proteome of the IMS (intermembrane space) of mitochondria of yeast cells was identified showing that approximately 20% of all soluble IMS proteins are dually localized to the IMS, as well as to other cellular compartments. Half of these dually localized proteins are important for oxidative stress defence and the other half are involved in energy homoeostasis. In the present review, we discuss the mechanisms leading to the dual localization of IMS proteins and the implications for mitochondrial function.


2021 ◽  
Author(s):  
Luke E Formosa ◽  
Shadi Maghool ◽  
Alice J. Sharpe ◽  
Boris Reljic ◽  
Linden Muellner-Wong ◽  
...  

Cytochrome c oxidase assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked in patients to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here we show that the absence of COA7 leads to arrest of the complex IV assembly pathway at the initial step where the COX1 module is built, which requires incorporation of copper and heme cofactors. In solution, purified COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. Surprisingly, the crystal structure of COA7, determined to 2.4 angstroms resolution, reveals a banana-shaped molecule composed of five helix-turn-helix repeats, tethered by disulfide bonds, with a structure entirely distinct from proteins with characterized heme binding activities. We therefore propose a role for COA7 in heme binding/chaperoning in the mitochondrial intermembrane space, this activity being crucial for and providing a missing link in complex IV biogenesis.


2007 ◽  
Vol 409 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Felicity H. Alcock ◽  
J. Günter Grossmann ◽  
Ian E. Gentle ◽  
Vladimir A. Likić ◽  
Trevor Lithgow ◽  
...  

Mitochondria were derived from intracellular bacteria and the mitochondrial intermembrane space is topologically equivalent to the bacterial periplasm. Both compartments contain ATP-independent chaperones involved in the transport of hydrophobic membrane proteins. The mitochondrial TIM (translocase of the mitochondrial inner membrane) 10 complex and the periplasmic chaperone SurA were examined in terms of evolutionary relation, structural similarity, substrate binding specificity and their function in transporting polypeptides for insertion into membranes. The two chaperones are evolutionarily unrelated; structurally, they are also distinct both in their characteristics, as determined by SAXS (small-angle X-ray scattering), and in pairwise structural comparison using the distance matrix alignment (DALILite server). Despite their structural differences, SurA and the TIM10 complex share a common binding specificity in Pepscan assays of substrate proteins. Comprehensive analysis of the binding on a total of 1407 immobilized 13-mer peptides revealed that the TIM10 complex, like SurA, does not bind hydrophobic peptides generally, but that both chaperones display selectivity for peptides rich in aromatic residues and with net positive charge. This common binding specificity was not sufficient for SurA to completely replace TIM10 in yeast cells in vivo. In yeast cells lacking TIM10, when SurA is targeted to the intermembrane space of mitochondria, it binds translocating substrate proteins, but fails to completely transfer the substrate to the translocase in the mitochondrial inner membrane. We suggest that SurA was incapable of presenting substrates effectively to the primitive TOM (translocase of the mitochondrial outer membrane) and TIM complexes in early mitochondria, and was replaced by the more effective small Tim chaperone.


1969 ◽  
Vol 66 (1) ◽  
pp. 21-28 ◽  
Author(s):  
KUMIKO KAWAGUCHI ◽  
KOHEI ISHIDATE ◽  
KUNIO TAGAWA

Sign in / Sign up

Export Citation Format

Share Document