scholarly journals Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. Selective inhibition of the amino-terminal active site.

1994 ◽  
Vol 269 (43) ◽  
pp. 26806-26814
Author(s):  
S Danilov ◽  
E Jaspard ◽  
T Churakova ◽  
H Towbin ◽  
F Savoie ◽  
...  
2011 ◽  
Vol 436 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Mohd Akif ◽  
Sylva L. Schwager ◽  
Colin S. Anthony ◽  
Bertrand Czarny ◽  
Fabrice Beau ◽  
...  

Human ACE (angiotensin-I-converting enzyme) has long been regarded as an excellent target for the treatment of hypertension and related cardiovascular diseases. Highly potent inhibitors have been developed and are extensively used in the clinic. To develop inhibitors with higher therapeutic efficacy and reduced side effects, recent efforts have been directed towards the discovery of compounds able to simultaneously block more than one zinc metallopeptidase (apart from ACE) involved in blood pressure regulation in humans, such as neprilysin and ECE-1 (endothelin-converting enzyme-1). In the present paper, we show the first structures of testis ACE [C-ACE, which is identical with the C-domain of somatic ACE and the dominant domain responsible for blood pressure regulation, at 1.97Å (1 Å=0.1 nm)] and the N-domain of somatic ACE (N-ACE, at 2.15Å) in complex with a highly potent and selective dual ACE/ECE-1 inhibitor. The structural determinants revealed unique features of the binding of two molecules of the dual inhibitor in the active site of C-ACE. In both structures, the first molecule is positioned in the obligatory binding site and has a bulky bicyclic P1′ residue with the unusual R configuration which, surprisingly, is accommodated by the large S2′ pocket. In the C-ACE complex, the isoxazole phenyl group of the second molecule makes strong pi–pi stacking interactions with the amino benzoyl group of the first molecule locking them in a ‘hand-shake’ conformation. These features, for the first time, highlight the unusual architecture and flexibility of the active site of C-ACE, which could be further utilized for structure-based design of new C-ACE or vasopeptidase inhibitors.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 486 ◽  
Author(s):  
Amanat Ali ◽  
Seham Abdullah Rashed Alzeyoudi ◽  
Shamma Abdulla Almutawa ◽  
Alya Nasir Alnajjar ◽  
Yusra Al Dhaheri ◽  
...  

Angiotensin-I converting enzyme (ACE) is a zinc metallopeptidase that has an important role in regulating the renin-angiotensin-aldosterone system (RAAS). It is also an important drug target for the management of cardiovascular diseases. Hemorphins are endogenous peptides that are produced by proteolytic cleavage of beta hemoglobin. A number of studies have reported various therapeutic activities of hemorphins. Previous reports have shown antihypertensive action of hemorphins via the inhibition of ACE. The sequence of hemorphins is highly conserved among mammals, except in camels, which harbors a unique Q>R variation in the peptide. Here, we studied the ACE inhibitory activity of camel hemorphins (LVVYPWTRRF and YPWTRRF) and non-camel hemorphins (LVVYPWTQRF and YPWTQRF). Computational methods were used to determine the most likely binding pose and binding affinity of both camel and non-camel hemorphins within the active site of ACE. Molecular dynamics simulations showed that the peptides interacted with critical residues in the active site of ACE. Notably, camel hemorphins showed higher binding affinity and sustained interactions with all three subsites of the ACE active site. An in vitro ACE inhibition assay showed that the IC50 of camel hemorphins were significantly lower than the IC50 of non-camel hemorphins.


2017 ◽  
Vol 139 ◽  
pp. 401-411 ◽  
Author(s):  
Daniel D.R. Arcanjo ◽  
Andreanne G. Vasconcelos ◽  
Lucas A. Nascimento ◽  
Ana Carolina Mafud ◽  
Alexandra Plácido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document