scholarly journals Human H4 Histone Gene Transcription Requires the Proliferation-Specific Nuclear Factor HiNF-D

1989 ◽  
Vol 264 (25) ◽  
pp. 15034-15042 ◽  
Author(s):  
A J van Wijnen ◽  
K L Wright ◽  
J B Lian ◽  
J L Stein ◽  
G S Stein
1993 ◽  
Vol 217 (2) ◽  
pp. 683-690 ◽  
Author(s):  
Peter ZAHRADKA ◽  
Tracy ELLIOT ◽  
Kenneth HOVLAND ◽  
Dawn E. LARSON ◽  
Laura SAWARD

2021 ◽  
pp. mbc.E20-10-0645
Author(s):  
James P. Kemp ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
Robert J. Duronio

The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core-shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that co-transcriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


1981 ◽  
Vol 9 (7) ◽  
pp. 1591-1598 ◽  
Author(s):  
Sam Bruschi ◽  
Julian R.E. Wells

2013 ◽  
Vol 71 (4) ◽  
pp. 599-613 ◽  
Author(s):  
Christoph F. Kurat ◽  
Judith Recht ◽  
Ernest Radovani ◽  
Tanja Durbic ◽  
Brenda Andrews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document