scholarly journals A receptor and G-protein-regulated polyphosphoinositide-specific phospholipase C from turkey erythrocytes. II. P2Y-purinergic receptor and G-protein-mediated regulation of the purified enzyme reconstituted with turkey erythrocyte ghosts.

1990 ◽  
Vol 265 (23) ◽  
pp. 13508-13514 ◽  
Author(s):  
A.J. Morris ◽  
G.L. Waldo ◽  
C.P. Downes ◽  
T.K. Harden
1992 ◽  
Vol 284 (3) ◽  
pp. 917-922 ◽  
Author(s):  
C Vaziri ◽  
C P Downes

Isoprenaline, previously known only to stimulate adenylate cyclase via the stimulatory G-protein, Gs, activates turkey erythrocyte ghost phospholipase C (PLC) in a dose-dependent manner when GTP or guanosine 5′-[gamma-thio]triphosphate (GTP[S]) is present. The effect is specific in that it is abolished by beta-adrenergic-receptor antagonists. Stimulation of adenosine receptors, which also couple to adenylate cyclase via Gs in turkey erythrocytes, does not activate PLC, indicating that the stimulation observed in the presence of isoprenaline is not due to Gs activation. Furthermore, the stimulation seen is independent of cyclic AMP production. Purified turkey erythrocyte PLC is activated in an adenosine 5′-[beta-thio]diphosphate (ADP[S]; a P2y-purinergic-receptor agonist)- or isoprenaline-regulated manner when reconstituted with turkey erythrocyte ghosts, demonstrating that a single species of PLC effector enzyme can be regulated by both the purinergic and the beta-adrenergic receptor populations present in turkey erythrocyte membranes. Pretreatment of intact turkey erythrocytes with the P2y agonist ADP[S] causes decreased PLC responsiveness of subsequent ghost preparations to ADP[S] stimulation, although responses to isoprenaline are unaffected (homologous desensitization). In contrast, pretreatment of intact erythrocytes with isoprenaline results in heterologous desensitization of both the P2y and the beta-adrenergic receptors. These effects occur at the level of receptor-G-protein coupling, since PLC stimulation by GTP[S] (which directly activates G-proteins) in the absence of agonists is unaffected.


1991 ◽  
Vol 266 (22) ◽  
pp. 14217-14225 ◽  
Author(s):  
G.L. Waldo ◽  
J.L. Boyer ◽  
A.J. Morris ◽  
T.K. Harden

1990 ◽  
Vol 14 ◽  
pp. 10
Author(s):  
P GIERSCHIK ◽  
M CAMPS ◽  
C HOU ◽  
E STROHMAIER ◽  
S GIERSCHIK

1998 ◽  
Vol 273 (12) ◽  
pp. 7148-7154 ◽  
Author(s):  
Banumathi Sankaran ◽  
James Osterhout ◽  
Dianqing Wu ◽  
Alan V. Smrcka

1999 ◽  
Vol 354 (1381) ◽  
pp. 379-386 ◽  
Author(s):  
M. Atiqur Rahman ◽  
Anthony C. Ashton ◽  
Frédéric A. Meunier ◽  
Bazbek A. Davletov ◽  
J. Oliver Dolly ◽  
...  

α–latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G–protein–coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin–G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with Gα q/11 and Gα o but not with Gα s , Gα i or Gα z , indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX–evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca 2+ , LTX triggers vesicular exocytosis because botulinum neurotoxins E, C1 or tetanus toxin inhibit the Ca 2+ –dependent component of the toxin–evoked release. Based on (i) the known involvement of Gα q in the regulation of inositol–1,4,5–triphosphate generation and (ii) the requirement of Ca 2+ in LTX action, we tested the effect of inhibitors of Ca 2+ mobilization on the toxin–evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca 2+ –dependent toxin's action. Thapsigargin, which depletes intracellular Ca 2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca 2+ . On the other hand, clostridial neurotoxins or drugs interfering with Ca 2+ metabolism do not inhibit the Ca 2+ –independent component of LTX–stimulated release. In the absence of Ca 2+ , the toxin induces in the presynaptic membrane non–selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca 2+ provided intracellular Ca 2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca 2+ , which then triggers secretion.


1996 ◽  
Vol 271 (33) ◽  
pp. 20208-20212 ◽  
Author(s):  
Shiying Zhang ◽  
Omar A. Coso ◽  
Regina Collins ◽  
J. Silvio Gutkind ◽  
William F. Simonds
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document