single species
Recently Published Documents


TOTAL DOCUMENTS

3742
(FIVE YEARS 1159)

H-INDEX

96
(FIVE YEARS 12)

2022 ◽  
Vol 8 ◽  
Author(s):  
Michelle L. Barnett ◽  
Alan E. S. Kemp ◽  
W. Alex M. Nimmo-Smith ◽  
Duncan A. Purdie

Marine phytoplankton form the base of marine food webs and are the driving force of the marine carbon cycle, so understanding the dynamics of their blooms is critical. While near-surface marine productivity (<10 m water depths) is extensively documented, that of the subsurface is less well characterised. Increasing evidence of the importance of subsurface chlorophyll maxima (SCM) and climatically driven increases in stratification of surface waters that promote SCM development call for improved sampling of the subsurface. To address this, we targeted the summer stratified waters of the Western English Channel, part of the NW European shelf seas, where SCM are commonly developed. In situ holography was applied to undertake the highest ever resolution, total water column, quantitative analysis of microplankton distribution, and demonstrated the importance of a SCM, co-located with the thermocline, dominated by a single species, the dinoflagellate Ceratium fusus. This species was dominant in the SCM over a wide area of the NW European shelf in the June/July 2015 study period and comprised up to 85% of the SCM biomass. Analysis of similarity and multivariate non-metric multidimensional scaling showed the phytoplankton community of the SCM to be statistically distinct from those of the surface and deep waters. Holography also revealed a fine scale layering of taxa at different levels within the SCM, likely reflecting ecological differences. Some taxa followed the peak abundance of C. fusus, while others reached maximum abundances immediately below or above the C. fusus maximum, suggesting the possible operation of exclusion mechanisms. Additionally, the detection of abundant aggregates located only within and beneath the SCM demonstrates the potential importance of this deep production for the export of carbon to the sea floor. Some predictions of phytoplankton productivity propose a shift to smaller cells in the more stratified oceans of the future resulting in declining production and export. Results presented here, however, contribute to a growing body of evidence that suggests, on the contrary, that key species among the larger celled/colonial, SCM-adapted diatoms and dinoflagellates may instead be selected in stratified conditions, driving increased production and export.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Jiao Qin ◽  
Bang Feng

True truffle (Tuber spp.) is one group of ascomycetes with great economic importance. During the last 30 years, numerous fine-scale population genetics studies were conducted on different truffle species, aiming to answer several key questions regarding their life cycles; these questions are important for their cultivation. It is now evident that truffles are heterothallic, but with a prevalent haploid lifestyle. Strains forming ectomycorrhizas and germinating ascospores act as maternal and paternal partners respectively. At the same time, a number of large-scale studies were carried out, highlighting the influences of the last glaciation and river isolations on the genetic structure of truffles. A retreat to southern refugia during glaciation, and a northward expansion post glaciation, were revealed in all studied European truffles. The Mediterranean Sea, acting as a barrier, has led to the existence of several refugia in different peninsulas for a single species. Similarly, large rivers in southwestern China act as physical barriers to gene flow for truffles in this region. Further studies can pay special attention to population genetics of species with a wide distribution range, such as T. himalayense, and the correlation between truffle genetic structure and the community composition of truffle-associated bacteria.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ignacio Escalante ◽  
Marisol Domínguez ◽  
Daisy A. Gómez-Ruiz ◽  
Glauco Machado

Many animals form aggregations with individuals of the same species (single-species aggregations, SSA). Less frequently, individuals may also aggregate with individuals of other species (mixed-species aggregations, MSA). Although the benefits and costs of SSA have been intensively studied, the same is not true for MSA. Here, we first review the cases of MSA in harvestmen, an arachnid order in which the records of MSA are more frequent than other arthropod orders. We then propose several benefits and costs of MSA in harvestmen, and contrast them with those of SSA. Second, using field-gathered data we describe gregariousness in seven species of Prionostemma harvestmen from Costa Rica. These species form MSA, but individuals are also found solitarily or in SSA. We tested one possible benefit and one possible cost of gregariousness in Prionostemma harvestmen. Regarding the benefit, we hypothesized that individuals missing legs would be more exposed to predation than eight-legged individuals and thus they should be found preferentially in aggregations, where they would be more protected from predators. Our data, however, do not support this hypothesis. Regarding the cost, we hypothesized that gregariousness increases the chances of parasitism. We found no support for this hypothesis either because both mite prevalence and infestation intensity did not differ between solitary or aggregated individuals. Additionally, the type of aggregation (SSA or MSA) was not associated with the benefit or the cost we explored. This lack of effect may be explained by the fluid membership of the aggregations, as we found high turnover over time in the number of individuals and species composition of the aggregations. In conclusion, we hope our review and empirical data stimulate further studies on MSA, which remains one of the most elusive forms of group living in animals.


mSystems ◽  
2022 ◽  
Author(s):  
Alejandro Palomo ◽  
Arnaud Dechesne ◽  
Otto X. Cordero ◽  
Barth F. Smets

Microbial species interact with each other and their environment (ecological processes) and undergo changes in their genomic repertoire over time (evolutionary processes). How these two classes of processes interact is largely unknown, especially for complex communities, as most studies of microbial evolutionary dynamics consider single species in isolation or a few interacting species in simplified experimental systems.


Author(s):  
D. A. Terentyev

Schematic distribution of the single-species TAC (total allowable catch) and RAС (recommended annual catch) in the complex quotas was developed for 2019 based on the long-term average annual data on the structure of the catches in major types of fishing within the Petropavlovsk-Commander subzone. Comparison of this distribution and real catches for this period was provided.


2022 ◽  
Vol 12 ◽  
Author(s):  
Charles D. Murin ◽  
Pavlo Gilchuk ◽  
James E. Crowe ◽  
Andrew B. Ward

Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 452
Author(s):  
Wen-Jeng Ho ◽  
Jheng-Jie Liu ◽  
Bo-Xun Ke

Luminescent down-shifting (LDS) spectral conversion is a feasible approach to enhancing the short-wavelength response of single junction solar cells. This paper presents the optical and electrical characteristics of LDS spectral conversion layers containing a single species or two species of Eu-doped phosphors applied to the front surface of silicon solar cells via spin-on coating. The chemical composition, surface morphology, and fluorescence emission of the LDS layers were respectively characterized using energy-dispersive X-ray analysis, optical imaging, and photoluminescence measurements. We also examined the LDS effects of various phosphors on silicon solar cells in terms of optical reflectance and external quantum efficiency. Finally, we examined the LDS effects of the phosphors on photovoltaic performance by measuring photovoltaic current density–voltage characteristics using an air-mass 1.5 global solar simulator. Compared to the control cell, the application of a single phosphor enhanced efficiency by 17.39% (from 11.14% to 13.07%), whereas the application of two different phosphors enhanced efficiency by 31.63% (from 11.14% to 14.66%).


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah M. Roberts ◽  
Patrick N. Halpin ◽  
James S. Clark

AbstractSingle species distribution models (SSDMs) are typically used to understand and predict the distribution and abundance of marine fish by fitting distribution models for each species independently to a combination of abiotic environmental variables. However, species abundances and distributions are influenced by abiotic environmental preferences as well as biotic dependencies such as interspecific competition and predation. When species interact, a joint species distribution model (JSDM) will allow for valid inference of environmental effects. We built a joint species distribution model of marine fish and invertebrates of the Northeast US Continental Shelf, providing evidence on species relationships with the environment as well as the likelihood of species to covary. Predictive performance is similar to SSDMs but the Bayesian joint modeling approach provides two main advantages over single species modeling: (1) the JSDM directly estimates the significance of environmental effects; and (2) predicted species richness accounts for species dependencies. An additional value of JSDMs is that the conditional prediction of species distributions can use not only the environmental associations of species, but also the presence and abundance of other species when forecasting future climatic associations.


Author(s):  
Kayla Mackenzie Blincow ◽  
Brice X Semmens

Multispecies fisheries, particularly those that routinely adapt the timing, location, and methods of fishing to prioritize fishery targets, present a challenge to traditional single-species management approaches. Efforts to develop robust management for multispecies fisheries require an understanding of how priorities drive the network of interactions between catch of different species, especially given the added challenges presented by climate change. Using 35 years of landings data from a southern California recreational fishery, we leveraged empirical dynamic modelling methods to construct causal interaction networks among the main species targeted by the fishery. We found strong evidence for dependencies among species landings time series driven by apparent hierarchical catch preference within the fishery. In addition, by parsing the landings time series into anomalously cool, normal, and anomalously warm regimes (the last reflecting ocean temperatures anticipated by 2040), we found that network complexity was highest during warm periods. Our findings suggest that as ocean temperatures continue to rise, so too will the risk of unintended consequences from single species management in this multispecies fishery.


Sign in / Sign up

Export Citation Format

Share Document