scholarly journals The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-acetylated sialic acids are a major product.

1985 ◽  
Vol 260 (11) ◽  
pp. 6600-6608
Author(s):  
A Varki ◽  
S Diaz
2007 ◽  
Vol 189 (22) ◽  
pp. 8250-8256 ◽  
Author(s):  
Keiichi Uchino ◽  
Terumi Saito ◽  
Birgit Gebauer ◽  
Dieter Jendrossek

ABSTRACTPoly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) fromRalstonia eutrophacatalyzed formation of PHB from14C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) from PHB. Synthesis of 3HB-CoA was also shown by incubation of artificial (protein-free) PHB with CoA and PhaZa1, confirming that PhaZa1 is a PHB depolymerase catalyzing the thiolysis reaction. Acetyl-CoA was the major product detectable after incubation of nPHB granules in the presence of NAD+, indicating that downstream mobilizing enzyme activities were also present and active in isolated nPHB granules. We propose that intracellular concentrations of key metabolites (CoA, acetyl-CoA, 3HB-CoA, NAD+/NADH) determine whether a cell accumulates or degrades PHB. Since the degradation product of PHB is 3HB-CoA, the cells do not waste energy by synthesis and degradation of PHB. Thus, our results explain the frequent finding of simultaneous synthesis and breakdown of PHB.


Metabolism ◽  
1992 ◽  
Vol 41 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Fernando López-Casillas ◽  
M.Verónica Ponce-Castañeda ◽  
Ki-Han Kim

Biochemistry ◽  
1983 ◽  
Vol 22 (3) ◽  
pp. 584-590 ◽  
Author(s):  
Fumihide Isohashi ◽  
Yoko Nakanishi ◽  
Yukiya Sakamoto

1979 ◽  
Vol 177 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Klaus-P. Grigat ◽  
Klaus Koppe ◽  
Claus-D. Seufert ◽  
Hans-D Söling

Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J.152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA.


Sign in / Sign up

Export Citation Format

Share Document