acetyl coenzyme
Recently Published Documents


TOTAL DOCUMENTS

819
(FIVE YEARS 38)

H-INDEX

63
(FIVE YEARS 5)

2022 ◽  
Vol 119 (2) ◽  
pp. e2113853119
Author(s):  
Christian Schöne ◽  
Anja Poehlein ◽  
Nico Jehmlich ◽  
Norman Adlung ◽  
Rolf Daniel ◽  
...  

The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide–dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.


2021 ◽  
Author(s):  
Keely E.A Oldham ◽  
Erica J Prentice ◽  
Emma L Summers ◽  
Joanna L Hicks

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize L-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates L‑serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of L-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, L-malate (present in the crystallization screen) to 2.01 Å and with the natural substrate L-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel β-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail.  L‑malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of L-cysteine with substrates L-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by L-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial-resistant N. gonorrhoeae.


Author(s):  
Robert L. Summers ◽  
Charisse Flerida A. Pasaje ◽  
Joao P. Pisco ◽  
Josefine Striepen ◽  
Madeline R. Luth ◽  
...  

Author(s):  
Ekaterina Kozaeva ◽  
Svetlana Volkova ◽  
Marta R.A. Matos ◽  
Mariela P. Mezzina ◽  
Tune Wulff ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 846
Author(s):  
Giordano Proietti ◽  
Yali Wang ◽  
Chiara Punzo ◽  
Jasmin Mecinović

Biomedically important histone lysine acetyltransferase KAT8 catalyses the acetyl coenzyme A-dependent acetylation of lysine on histone and other proteins. Here, we explore the ability of human KAT8 to catalyse the acetylation of histone H4 peptides possessing lysine and its analogues at position 16 (H4K16). Our synthetic and enzymatic studies on chemically and structurally diverse lysine mimics demonstrate that KAT8 also has a capacity to acetylate selected lysine analogues that possess subtle changes on the side chain and main chain. Overall, this work highlights that KAT8 has a broader substrate scope beyond natural lysine, and contributes to the design of new chemical probes targeting KAT8 and other members of the histone lysine acetyltransferase (KAT) family.


2021 ◽  
Vol 22 (2) ◽  
pp. 764
Author(s):  
Russel J. Reiter ◽  
Ramaswamy Sharma ◽  
Sergio Rosales-Corral

Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin’s function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin’s action in switching the metabolic phenotype of cells.


Sign in / Sign up

Export Citation Format

Share Document